TY - JOUR
T1 - Emilin 2 promotes the mechanical gradient of the cochlear basilar membrane and resolution of frequencies in sound
AU - Russell, Ian J.
AU - Lukashkina, Victoria A.
AU - Levic, Snezana
AU - Levic, Snezana
AU - Cho, Young Wook
AU - Lukashkin, Andrei N.
AU - Ng, Lily
AU - Forrest, Douglas
N1 - Publisher Copyright:
© 2020 The Authors.
PY - 2020/6
Y1 - 2020/6
N2 - The detection of different frequencies in sound is accomplished with remarkable precision by the basilar membrane (BM), an elastic, ribbon-like structure with graded stiffness along the cochlear spiral. Sound stimulates a wave of displacement along the BM with maximal magnitude at precise, frequency-specific locations to excite neural signals that carry frequency information to the brain. Perceptual frequency discrimination requires fine resolution of this frequency map, but little is known of the intrinsic molecular features that demarcate the place of response on the BM. To investigate the role of BM microarchitecture in frequency discrimination, we deleted extracellular matrix protein emilin 2, which disturbed the filamentous organization in the BM. Emilin2-/- mice displayed broadened mechanical and neural frequency tuning with multiple response peaks that are shifted to lower frequencies than normal. Thus, emilin 2 confers a stiffness gradient on the BM that is critical for accurate frequency resolution.
AB - The detection of different frequencies in sound is accomplished with remarkable precision by the basilar membrane (BM), an elastic, ribbon-like structure with graded stiffness along the cochlear spiral. Sound stimulates a wave of displacement along the BM with maximal magnitude at precise, frequency-specific locations to excite neural signals that carry frequency information to the brain. Perceptual frequency discrimination requires fine resolution of this frequency map, but little is known of the intrinsic molecular features that demarcate the place of response on the BM. To investigate the role of BM microarchitecture in frequency discrimination, we deleted extracellular matrix protein emilin 2, which disturbed the filamentous organization in the BM. Emilin2-/- mice displayed broadened mechanical and neural frequency tuning with multiple response peaks that are shifted to lower frequencies than normal. Thus, emilin 2 confers a stiffness gradient on the BM that is critical for accurate frequency resolution.
UR - http://www.scopus.com/inward/record.url?scp=85086639065&partnerID=8YFLogxK
U2 - 10.1126/sciadv.aba2634
DO - 10.1126/sciadv.aba2634
M3 - Article
C2 - 32577518
AN - SCOPUS:85086639065
SN - 2375-2548
VL - 6
JO - Science advances
JF - Science advances
IS - 24
M1 - EABA2634
ER -