Emergent properties of networks of biological signaling pathways

Upinder S. Bhalla, Ravi Iyengar

Research output: Contribution to journalArticlepeer-review

1290 Scopus citations


Many distinct signaling pathways allow the cell to receive, process, and respond to information. Often, components of different pathways interact, resulting in signaling networks. Biochemical signaling networks were constructed with experimentally obtained constants and analyzed by computational methods to understand their role in complex biological processes. These networks exhibit emergent properties such as integration of signals across multiple time scales, generation of distinct outputs depending on input strength and duration, and self-sustaining feedback loops. Feedback can result in bistable behavior with discrete steady-state activities, well- defined input thresholds for transition between states and prolonged signal output, and signa modulation in response to transient stimuli. These properties of signaling networks raise the possibility that information for 'learned behavior' of biological systems may be stored within intracellular biochemical reactions that comprise signaling pathways.

Original languageEnglish
Pages (from-to)381-387
Number of pages7
Issue number5400
StatePublished - 15 Jan 1999


Dive into the research topics of 'Emergent properties of networks of biological signaling pathways'. Together they form a unique fingerprint.

Cite this