TY - JOUR
T1 - Electronic influence of substitution on the pyridine ring within NNN pincer-type molecules
AU - Schwartz, Timothy M.
AU - Burnett, Marianne E.
AU - Green, Kayla N.
N1 - Publisher Copyright:
This journal is © The Royal Society of Chemistry.
PY - 2020/2/21
Y1 - 2020/2/21
N2 - Pincer molecules are of increasing interest due to the modular nature of modification and range of reactivity observed when coordinated to metal ions. A subset within the family of pincer molecules use a pyridine group to bridge the outer two arms as well as provide a N-donor atom for metal binding. While the arm appendages have been studied extensively, little research has been conducted on the electronic effects of the central, substituted pyridine systems. Therefore, a series of NNN pincer-type ligands with substitution on the 4-position of the pyridine ring with -OH, -OBn, -H, -Cl, and -NO2 functional groups were synthesized and characterized through NMR spectroscopy and ESI-HRMS. Each pincer was metalated with Cu(ii) salts and evaluated through X-ray diffraction analysis, cyclic voltammetry, and density functional theory analysis. The results indicate that the relatively unstudied -OBn group demonstrates both electron-withdrawing (XRD bond lengths) and electron-donating (NMR spectroscopy) properties. The -NO2 pincer ligand shows a redox event within experimental windows evaluated, in contrast to the other congeners studied. In addition, electron-donating groups increase the electron density around the Cu(ii) center based on DFT studies and cyclic voltammetry. These findings can be applied to other pyridine-based pincer systems when considering ligand design and warrants future characterization of 4-position substituted pyridines.
AB - Pincer molecules are of increasing interest due to the modular nature of modification and range of reactivity observed when coordinated to metal ions. A subset within the family of pincer molecules use a pyridine group to bridge the outer two arms as well as provide a N-donor atom for metal binding. While the arm appendages have been studied extensively, little research has been conducted on the electronic effects of the central, substituted pyridine systems. Therefore, a series of NNN pincer-type ligands with substitution on the 4-position of the pyridine ring with -OH, -OBn, -H, -Cl, and -NO2 functional groups were synthesized and characterized through NMR spectroscopy and ESI-HRMS. Each pincer was metalated with Cu(ii) salts and evaluated through X-ray diffraction analysis, cyclic voltammetry, and density functional theory analysis. The results indicate that the relatively unstudied -OBn group demonstrates both electron-withdrawing (XRD bond lengths) and electron-donating (NMR spectroscopy) properties. The -NO2 pincer ligand shows a redox event within experimental windows evaluated, in contrast to the other congeners studied. In addition, electron-donating groups increase the electron density around the Cu(ii) center based on DFT studies and cyclic voltammetry. These findings can be applied to other pyridine-based pincer systems when considering ligand design and warrants future characterization of 4-position substituted pyridines.
UR - http://www.scopus.com/inward/record.url?scp=85079599517&partnerID=8YFLogxK
U2 - 10.1039/c9dt04714j
DO - 10.1039/c9dt04714j
M3 - Article
C2 - 32022045
AN - SCOPUS:85079599517
SN - 1477-9226
VL - 49
SP - 2356
EP - 2363
JO - Dalton Transactions
JF - Dalton Transactions
IS - 7
ER -