TY - JOUR
T1 - EGFR/Ras-induced CCL20 production modulates the tumour microenvironment
AU - Hippe, Andreas
AU - Braun, Stephan Alexander
AU - Oláh, Péter
AU - Gerber, Peter Arne
AU - Schorr, Anne
AU - Seeliger, Stephan
AU - Holtz, Stephanie
AU - Jannasch, Katharina
AU - Pivarcsi, Andor
AU - Buhren, Bettina
AU - Schrumpf, Holger
AU - Kislat, Andreas
AU - Bünemann, Erich
AU - Steinhoff, Martin
AU - Fischer, Jens
AU - Lira, Sérgio A.
AU - Boukamp, Petra
AU - Hevezi, Peter
AU - Stoecklein, Nikolas Hendrik
AU - Hoffmann, Thomas
AU - Alves, Frauke
AU - Sleeman, Jonathan
AU - Bauer, Thomas
AU - Klufa, Jörg
AU - Amberg, Nicole
AU - Sibilia, Maria
AU - Zlotnik, Albert
AU - Müller-Homey, Anja
AU - Homey, Bernhard
N1 - Funding Information:
Funding information This project was funded by the SPP 1190 “The tumor-vessel interface” and HO 2092/8-1 of the ‘Deutsche Forschungsgemeinschaft’ (DFG) to B. Homey. In addition, it was supported by grants from the Austrian Science Fund (FWF, W1212 to N. Amberg and J. Klufa and I4300-B to T. Bauer), the WWTF project LS16-025 and the European Research Council (ERC) Advanced grant (ERC-2015-AdG TNT-Tumors 694883) to M. Sibilia.
Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Cancer Research UK.
PY - 2020/9/15
Y1 - 2020/9/15
N2 - Background: The activation of the EGFR/Ras-signalling pathway in tumour cells induces a distinct chemokine repertoire, which in turn modulates the tumour microenvironment. Methods: The effects of EGFR/Ras on the expression and translation of CCL20 were analysed in a large set of epithelial cancer cell lines and tumour tissues by RT-qPCR and ELISA in vitro. CCL20 production was verified by immunohistochemistry in different tumour tissues and correlated with clinical data. The effects of CCL20 on endothelial cell migration and tumour-associated vascularisation were comprehensively analysed with chemotaxis assays in vitro and in CCR6-deficient mice in vivo. Results: Tumours facilitate progression by the EGFR/Ras-induced production of CCL20. Expression of the chemokine CCL20 in tumours correlates with advanced tumour stage, increased lymph node metastasis and decreased survival in patients. Microvascular endothelial cells abundantly express the specific CCL20 receptor CCR6. CCR6 signalling in endothelial cells induces angiogenesis. CCR6-deficient mice show significantly decreased tumour growth and tumour-associated vascularisation. The observed phenotype is dependent on CCR6 deficiency in stromal cells but not within the immune system. Conclusion: We propose that the chemokine axis CCL20–CCR6 represents a novel and promising target to interfere with the tumour microenvironment, and opens an innovative multimodal strategy for cancer therapy.
AB - Background: The activation of the EGFR/Ras-signalling pathway in tumour cells induces a distinct chemokine repertoire, which in turn modulates the tumour microenvironment. Methods: The effects of EGFR/Ras on the expression and translation of CCL20 were analysed in a large set of epithelial cancer cell lines and tumour tissues by RT-qPCR and ELISA in vitro. CCL20 production was verified by immunohistochemistry in different tumour tissues and correlated with clinical data. The effects of CCL20 on endothelial cell migration and tumour-associated vascularisation were comprehensively analysed with chemotaxis assays in vitro and in CCR6-deficient mice in vivo. Results: Tumours facilitate progression by the EGFR/Ras-induced production of CCL20. Expression of the chemokine CCL20 in tumours correlates with advanced tumour stage, increased lymph node metastasis and decreased survival in patients. Microvascular endothelial cells abundantly express the specific CCL20 receptor CCR6. CCR6 signalling in endothelial cells induces angiogenesis. CCR6-deficient mice show significantly decreased tumour growth and tumour-associated vascularisation. The observed phenotype is dependent on CCR6 deficiency in stromal cells but not within the immune system. Conclusion: We propose that the chemokine axis CCL20–CCR6 represents a novel and promising target to interfere with the tumour microenvironment, and opens an innovative multimodal strategy for cancer therapy.
UR - http://www.scopus.com/inward/record.url?scp=85087011148&partnerID=8YFLogxK
U2 - 10.1038/s41416-020-0943-2
DO - 10.1038/s41416-020-0943-2
M3 - Article
C2 - 32601464
AN - SCOPUS:85087011148
SN - 0007-0920
VL - 123
SP - 942
EP - 954
JO - British Journal of Cancer
JF - British Journal of Cancer
IS - 6
ER -