TY - JOUR
T1 - Effects of chronic treatment with L-arginine on atherosclerosis in ApoE knockout and ApoE/inducible NO synthase double-knockout mice
AU - Chen, Jiqiu
AU - Kuhlencordt, Peter
AU - Urano, Fumi
AU - Ichinose, Hiroshi
AU - Astern, Joshua
AU - Huang, Paul L.
PY - 2003/1/1
Y1 - 2003/1/1
N2 - Objective - L-Arginine serves as a substrate for the formation of NO by the NO synthase (NOS) enzymes. In some studies, dietary supplementation of L-arginine reduces atherosclerosis through the restoration of NO release and improvement in endothelial function. In the present study, we investigate the effect of L-arginine supplementation on the development of atherosclerosis in a mouse model. Methods and Results - Apolipoprotein E (apoE) knockout (ko) and apoE/inducible NOS (iNOS) double-ko mice were fed a western-type diet with or without L-arginine supplementation in the drinking water (25 g/L). L-Arginine did not affect the lesion area after 16 weeks or 24 weeks in apoE ko mice. However, L-arginine negates the protective effect of iNOS gene deficiency. In contrast to apoE/iNOS dko mice without arginine supplementation, lesion areas were increased in apoE/iNOS double-ko mice with arginine supplementation at 24 weeks. This was associated with an increase in thiobarbituric acid-reactive malondialdehyde adducts, nitrotyrosine staining within lesions, and a decrease in the ratio of reduced tetrahydrobiopterin to total biopterins. Conclusions - Although L-arginine supplementation does not affect lesion formation in the western-type diet-fed apoE ko mice, it negates the protective effect of iNOS gene deficiency in this model. This raises the possibility that L-arginine supplementation may paradoxically contribute to, rather than reduce, lesion formation by mechanisms that involve lipid oxidation, peroxynitrite formation, and NOS uncoupling.
AB - Objective - L-Arginine serves as a substrate for the formation of NO by the NO synthase (NOS) enzymes. In some studies, dietary supplementation of L-arginine reduces atherosclerosis through the restoration of NO release and improvement in endothelial function. In the present study, we investigate the effect of L-arginine supplementation on the development of atherosclerosis in a mouse model. Methods and Results - Apolipoprotein E (apoE) knockout (ko) and apoE/inducible NOS (iNOS) double-ko mice were fed a western-type diet with or without L-arginine supplementation in the drinking water (25 g/L). L-Arginine did not affect the lesion area after 16 weeks or 24 weeks in apoE ko mice. However, L-arginine negates the protective effect of iNOS gene deficiency. In contrast to apoE/iNOS dko mice without arginine supplementation, lesion areas were increased in apoE/iNOS double-ko mice with arginine supplementation at 24 weeks. This was associated with an increase in thiobarbituric acid-reactive malondialdehyde adducts, nitrotyrosine staining within lesions, and a decrease in the ratio of reduced tetrahydrobiopterin to total biopterins. Conclusions - Although L-arginine supplementation does not affect lesion formation in the western-type diet-fed apoE ko mice, it negates the protective effect of iNOS gene deficiency in this model. This raises the possibility that L-arginine supplementation may paradoxically contribute to, rather than reduce, lesion formation by mechanisms that involve lipid oxidation, peroxynitrite formation, and NOS uncoupling.
KW - Apolipoprotein E
KW - Arginine
KW - Atherosclerosis
KW - Nitric oxide
UR - http://www.scopus.com/inward/record.url?scp=0037233948&partnerID=8YFLogxK
U2 - 10.1161/01.ATV.0000040223.74255.5A
DO - 10.1161/01.ATV.0000040223.74255.5A
M3 - Article
C2 - 12524231
AN - SCOPUS:0037233948
SN - 1079-5642
VL - 23
SP - 97
EP - 103
JO - Arteriosclerosis, Thrombosis, and Vascular Biology
JF - Arteriosclerosis, Thrombosis, and Vascular Biology
IS - 1
ER -