Effects of α7 nicotinic acetylcholine receptor positive allosteric modulator on BDNF, NKCC1 and KCC2 expression in the hippocampus following lipopolysaccharide-induced allodynia and hyperalgesia in a mouse model of inflammatory pain

Muzaffar Abbas, Sami Alzarea, Roger L. Papke, Shafiqur Rahman

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Background & Objectives: Hyperalgesia and allodynia are frequent symptoms of inflammatory pain. Neuronal excitability induced by the Brain-Derived Neurotrophic Factor (BDNF)-ty-rosine receptor kinase B (TrkB) cascade has a role in the modulation of inflammatory pain. The effects of 3a,4,5,9b-tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS), an α7 nicotinic Acetylcholine Receptor Positive Allosteric Modulator (nAChR PAM), on hippocampal BDNF, cation-chloride cotransporters, NKCC1 and KCC2, expression in inflammatory pain are not known. The objective of the study was to determine the effects of TQS on BDNF, NKCC1, and KCC2 expression in the hippocampus following lipopolysaccharide (LPS)-induced al-lodynia and hyperalgesia in a mouse model of inflammatory pain. Methods: Mice were treated with TQS followed by LPS (1 mg/kg, ip) administration. The effects of TQS on mRNA and BDNF in the hippocampus were examined using qRT-PCR and Western blot, respectively. Immunoreactivity of BDNF, NKCC1, and KCC2 in the hippocampus was measured after LPS administration using immunofluorescence assay. Allodynia and hyperalgesia were determined using von Frey filaments and hot plate, respectively. Results: The LPS (1 mg/kg) upregulates mRNA of BDNF and downregulates mRNA of KCC2 in the hippocampus and pretreatment of TQS (4 mg/kg) reversed the effects induced by LPS. In addi-tion, the TQS decreased LPS-induced upregulation of BDNF and p-NKCC1 immunoreactivity in the dentate gyrus and CA1 region of the hippocampus. BDNF receptor (TrkB) antagonist, ANA12 (0.50 mg/kg), and NKCC1 inhibitor bumetanide (30 mg/kg) reduced LPS-induced allodynia and hyperalgesia. Blockade of TrkB with ANA12 (0.25 mg/kg) enhanced the effects of TQS (1 mg/kg) against LPS-induced allodynia and hyperalgesia. Similarly, bumetanide (10 mg/kg) enhanced the effects of TQS (1 mg/kg) against allodynia and hyperalgesia. Conclusion: These results suggest that antinociceptive effects of α7 nAChR PAM are associated with downregulation of hippocampal BDNF and p-NKCC1 and upregulation of KCC2 in a mouse model of inflammatory pain.

Original languageEnglish
Pages (from-to)366-377
Number of pages12
JournalCNS and Neurological Disorders - Drug Targets
Volume20
Issue number4
DOIs
StatePublished - 2021
Externally publishedYes

Keywords

  • Hippocampus
  • Inflammatory pain
  • Mice
  • Microglia
  • Nicotinic receptor
  • α7 nicotinic receptor positive allosteric modulator

Fingerprint

Dive into the research topics of 'Effects of α7 nicotinic acetylcholine receptor positive allosteric modulator on BDNF, NKCC1 and KCC2 expression in the hippocampus following lipopolysaccharide-induced allodynia and hyperalgesia in a mouse model of inflammatory pain'. Together they form a unique fingerprint.

Cite this