TY - JOUR
T1 - Effect of strontium substitution on the cytocompatibility and 3-D scaffold structure for the xSrO–(10−x) MgO–60SiO2–20CaO–10 P2O5 (2 ≤ x ≤ 8) sol–gel glasses
AU - Thakur, Swati
AU - Garg, Shikha
AU - Kaur, Gurbinder
AU - Pandey, Om Prakash
N1 - Publisher Copyright:
© 2017, Springer Science+Business Media New York.
PY - 2017/6/1
Y1 - 2017/6/1
N2 - Abstract: In the present study, novel glasses xSrO–(10−x) MgO–60SiO2–20CaO–10 P2O5 (2 ≤ x ≤ 8, in steps of 2) are synthesized via sol–gel method. The current work focusses on the evaluation of mechanical, physical and biocompatible properties for sol–gel glasses. The pore size and surface area of these glasses were studied using BET analysis. The structural aspect of the glasses/glass ceramics was studied by XRD and Raman spectroscopy. The cytotoxicity assays were conducted for MG63 human osteosarcoma cell line. Furthermore, the as prepared glasses were used for the fabrication of 3-D porous scaffolds via polymer replication method. The loaded green bodies have been sintered at 700, 800 and 900 °C and were kept for 6 h to densify the glass network. The effect of sintering temperature on the structure and properties of as prepared scaffolds were analyzed via scanning electron microscopy (SEM) and porosity calculations. Graphical Abstract: [InlineMediaObject not available: see fulltext.].
AB - Abstract: In the present study, novel glasses xSrO–(10−x) MgO–60SiO2–20CaO–10 P2O5 (2 ≤ x ≤ 8, in steps of 2) are synthesized via sol–gel method. The current work focusses on the evaluation of mechanical, physical and biocompatible properties for sol–gel glasses. The pore size and surface area of these glasses were studied using BET analysis. The structural aspect of the glasses/glass ceramics was studied by XRD and Raman spectroscopy. The cytotoxicity assays were conducted for MG63 human osteosarcoma cell line. Furthermore, the as prepared glasses were used for the fabrication of 3-D porous scaffolds via polymer replication method. The loaded green bodies have been sintered at 700, 800 and 900 °C and were kept for 6 h to densify the glass network. The effect of sintering temperature on the structure and properties of as prepared scaffolds were analyzed via scanning electron microscopy (SEM) and porosity calculations. Graphical Abstract: [InlineMediaObject not available: see fulltext.].
UR - http://www.scopus.com/inward/record.url?scp=85019081237&partnerID=8YFLogxK
U2 - 10.1007/s10856-017-5901-z
DO - 10.1007/s10856-017-5901-z
M3 - Article
C2 - 28484926
AN - SCOPUS:85019081237
SN - 0957-4530
VL - 28
JO - Journal of Materials Science: Materials in Medicine
JF - Journal of Materials Science: Materials in Medicine
IS - 6
M1 - 89
ER -