Abstract
BACKGROUND: Angiotensin II stimulates epithelial Na+ channel (ENaC) by aldosterone-independent mechanism. We now test the effect of angiotensin II on ENaC in the distal convoluted tubule (DCT) and cortical collecting duct (CCD) of wild-type (WT) and kidney-specific mineralocorticoid receptor knockout mice (KS-MR-KO). METHODS AND RESULTS: We used electrophysiological, immunoblotting and renal-clearance methods to examine the effect of angiotensin II on ENaC in KS-MR-KO and wild-type mice. High K+ intake stimulated ENaC in the late DCT/early connecting tubule (DCT2/CNT) and in the CCD whereas low sodium intake stimulated ENaC in the CCD but not in the DCT2/CNT. The deletion of MR abolished the stimulatory effect of high K+ and low sodium intake on ENaC, partially inhibited ENaC in DCT2/ CNT but almost abolished ENaC activity in the CCD. Application of losartan inhibited ENaC only in DCT2/CNT of both wild-type and KS-MR-KO mice but not in the CCD. Angiotensin II infusion for 3 days has a larger stimulatory effect on ENaC in the DCT2/CNT than in the CCD. Three lines of evidence indicate that angiotensin II can stimulate ENaC by MR-independent mechanism: (1) angiotensin II perfusion augmented ENaC expression in KS-MR-KO mice; (2) angiotensin II stimulated ENaC in the DCT2/CNT but to a lesser degree in the CCD in KS-MR-KO mice; (3) angiotensin II infusion augmented benzamil-induced natriuresis, increased the renal K+ excretion and corrected hyperkalemia of KS-MR-KO mice. CONCLUSIONS: Angiotensin II-induced stimulation of ENaC occurs mainly in the DCT2/CNT and to a lesser degree in the CCD and MR plays a dominant role in determining ENaC activity in the CCD but to a lesser degree in the DCT2/CNT.
Original language | English |
---|---|
Article number | e014996 |
Journal | Journal of the American Heart Association |
Volume | 9 |
Issue number | 7 |
DOIs | |
State | Published - 9 Apr 2020 |
Externally published | Yes |
Keywords
- AT1R
- Aldosterone
- Hyperkalemia
- Hypertension