Abstract
The stable transcription factor ΔFosB is induced in the nucleus accumbens (NAc) by chronic exposure to several drugs of abuse, and transgenic expression of ΔFosB in the striatum enhances the rewarding properties of morphine and cocaine. However, the mechanistic basis for these observations is incompletely understood. We used a bitransgenic mouse model with inducible expression of ΔFosB in dopamine D 1 receptor/dynorphin- containing striatal neurons to determine the effect of ΔFosB expression on opioid and cannabinoid receptor signaling in the NAc. Results showed that mu opioid-mediated G-protein activity and inhibition of adenylyl cyclase were enhanced in the NAc of mice that expressed ΔFosB. Similarly, kappa opioid inhibition of adenylyl cyclase was enhanced in the ΔFosB expressing mice. In contrast, cannabinoid receptor-mediated signaling did not differ between mice overexpressing ΔFosB and control mice. These findings suggest that opioid and cannabinoid receptor signaling are differentially modulated by expression of ΔFosB, and indicate that ΔFosB expression might produce some of its effects via enhanced mu and kappa opioid receptor signaling in the NAc.
Original language | English |
---|---|
Pages (from-to) | 1470-1476 |
Number of pages | 7 |
Journal | Neuropharmacology |
Volume | 61 |
Issue number | 8 |
DOIs | |
State | Published - Dec 2011 |
Keywords
- Adenylyl cyclase
- G-protein
- Striatum