24 Scopus citations

Abstract

The cell cycle-dependent transcription factor, E2F-1, regulates the cyclin-like species of the DNA repair enzyme uracil-DNA glycosylase (UDG) gene in human osteosarcoma (Saos-2) cells. We demonstrate, through the deletion of the human UDG promoter sequences, that expression of E2F-1 activates the UDG promoter through several E2F sites. The major putative downstream site for E2F, located in the first exon, serves as a target for E2F-1/DP1 complex binding in vitro. We also provide evidence for the functional relationship between the cyclin-like UDG gene product and E2F. High levels of UDG expression in a transient transfection assay result in the down-regulation of transcriptional activity through elements specific for E2F-mediated transcription. Overexpression of UDG in Saos 2 cells was observed to delay growth late in G1 phase and transiently arrest these cells from progressing into the S phase. This hypothetical model integrates one mechanism of DNA repair with the cell cycle control of gene transcription, likely through E2F. This implicates E2F as a multifunctional target for proteins and enzymes, possibly, responsive to DNA damage through the negative effect of UDG on E2F-mediated transcriptional activity.

Original languageEnglish
Pages (from-to)5289-5298
Number of pages10
JournalJournal of Biological Chemistry
Volume270
Issue number10
DOIs
StatePublished - 10 Mar 1995

Fingerprint

Dive into the research topics of 'E2F-1 and a cyclin-like DNA repair enzyme, uracil-DNA glycosylase, provide evidence for an autoregulatory mechanism for transcription'. Together they form a unique fingerprint.

Cite this