Abstract
To explore the parotid normal tissue complication probability (NTCP) modeling with percolation-based dose clusters for head-and-neck patients receiving concomitant chemotherapy and radiation therapy. Cluster models incorporating the spatial dose distribution in the parotid gland were developed to evaluate the radiation induced complication. Cluster metrics including the mean cluster size (NMCS) and the largest cluster size both normalized by the gland volume (NSLC) were evaluated and scrutinized against the benchmark NTCP. Two fitting strategies to the Lyman–Kutcher–Burman (LKB) model using the maximum likelihood method were devised: the volume parameter n fixed at 1.0 (mean dose model) and unrestricted (full LKB model). The fitted parameters TD50 and m were assessed with the LKB NTCP models with the available xerostomia data. NSLC was a better metric than NMCS with reference to the LKB model and strong correlation (r ~ 0.95) was observed between NTCP and NSLC. The mean dose model returned the parameter TD50 (39.9 Gy) and m (0.4) from the NSLC of threshold dose at around 40 Gy. Drastically different TD50 and m values were obtained from the fittings via the full LKB model, where the threshold dose would be near 27 Gy. Bootstrapping analyses further confirmed the fitting outcomes. Strong correlation with the traditional NTCP models revealed that the cluster model could achieve what NTCP models attain and may offer additional information. Parameterization of the model indicated that the model could have different predictions from current clinical recommendations. Further investigation using toxicity data is under way to validate the cluster model.
Original language | English |
---|---|
Journal | Australasian Physical and Engineering Sciences in Medicine |
DOIs | |
State | Accepted/In press - 2019 |
Keywords
- Cluster model
- Head and neck cancer
- Intensity modulated radiation therapy
- Normal tissue complication probability
- Parotid gland toxicity