Dnmt3a1 upregulates transcription of distinct genes and targets chromosomal gene clusters for epigenetic silencing in mouse embryonic stem cells

Andriana G. Kotini, Anastasia Mpakali, Theodora Agalioti

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Dnmt3a1 and Dnmt3a2 are two de novo DNA methyltransferases expressed in mouse embryonic stem cells (mESCs). They differ in that a 219-amino-acid (aa) amino (N)-terminal noncatalytic domain is present only in Dnmt3a1. Here, we examined the unique functions of Dnmt3a1 in mESCs by targeting the coding sequence of the Dnmt3a1 N-terminal domain tagged with enhanced green fluorescent protein (GFP) for insertion into the mouse Rosa26 locus. Using these targeted cells (GFP-3a1Nter), we showed that Dnmt3a1 was efficiently recruited to the silenced Oct3/4 and activated Vtn (vitronectin) gene promoters via its unique N-terminal domain. This recruitment affected the two genes in contrasting ways, compromising Oct3/4 gene promoter DNA methylation to prevent consolidation of the silent state while significantly reducing Vtn transcription. We used this negative effect of the Dnmt3a1 N-terminal domain to investigate the extent of transcriptional regulation by Dnmt3a1 in mESCs by using microarrays. A small group of all-trans retinoic acid (tRA)-inducible genes had lower transcript levels in GFP-3a1Nter cells than in wild-type mESCs. Intriguingly, this group included genes that are important for fetal nutrition, placenta development, and metabolic functions and is enriched for a distinct set of imprinted genes. We also identified a larger group of genes that showed higher transcript levels in the GFP-3a1Nter-expressing cells than in wild-type mESCs, including pluripotency factors and key regulators of primordial germ cell differentiation. Thus, Dnmt3a1 in mESCs functions primarily as a negative and to a lesser extent as a positive regulator of transcription. Our findings suggest that Dnmt3a1 positively affects transcription of specific genes at the promoter level and targets chromosomal domains to epigenetically silence gene clusters in mESCs.

Original languageEnglish
Pages (from-to)1577-1592
Number of pages16
JournalMolecular and Cellular Biology
Volume31
Issue number7
DOIs
StatePublished - Apr 2011
Externally publishedYes

Fingerprint

Dive into the research topics of 'Dnmt3a1 upregulates transcription of distinct genes and targets chromosomal gene clusters for epigenetic silencing in mouse embryonic stem cells'. Together they form a unique fingerprint.

Cite this