TY - JOUR
T1 - Direct projections from the caudal vestibular nuclei to the ventrolateral medulla in the rat
AU - Holstein, G. R.
AU - Friedrich, V. L.
AU - Kang, T.
AU - Kukielka, E.
AU - Martinelli, G. P.
N1 - Funding Information:
This research was supported by NIH grant 1R01 DC008846 from the National Institute on Deafness and Other Communication Disorders .
PY - 2011/2/17
Y1 - 2011/2/17
N2 - While the basic pathways mediating vestibulo-ocular, -spinal, and -collic reflexes have been described in detail, little is known about vestibular projections to central autonomic sites. Previous studies have primarily focused on projections from the caudal vestibular region to solitary, vagal and parabrachial nuclei, but have noted a sparse innervation of the ventrolateral medulla. Since a direct pathway from the vestibular nuclei to the rostral ventrolateral medulla would provide a morphological substrate for rapid modifications in blood pressure, heart rate and respiration with changes in posture and locomotion, the present study examined anatomical evidence for this pathway using anterograde and retrograde tract tracing and immunofluorescence detection in brainstem sections of the rat medulla. The results provide anatomical evidence for direct pathways from the caudal vestibular nuclear complex to the rostral and caudal ventrolateral medullary regions. The projections are conveyed by fine and highly varicose axons that ramify bilaterally, with greater terminal densities present ipsilateral to the injection site and more rostrally in the ventrolateral medulla. In the rostral ventrolateral medulla, these processes are highly branched and extremely varicose, primarily directed toward the somata and proximal dendrites of non-catecholaminergic neurons, with minor projections to the distal dendrites of catecholaminergic cells. In the caudal ventrolateral medulla, the axons of vestibular nucleus neurons are more modestly branched with fewer varicosities, and their endings are contiguous with both the perikarya and dendrites of catecholamine-containing neurons. These data suggest that vestibular neurons preferentially target the rostral ventrolateral medulla, and can thereby provide a morphological basis for a short latency vestibulo-sympathetic pathway.
AB - While the basic pathways mediating vestibulo-ocular, -spinal, and -collic reflexes have been described in detail, little is known about vestibular projections to central autonomic sites. Previous studies have primarily focused on projections from the caudal vestibular region to solitary, vagal and parabrachial nuclei, but have noted a sparse innervation of the ventrolateral medulla. Since a direct pathway from the vestibular nuclei to the rostral ventrolateral medulla would provide a morphological substrate for rapid modifications in blood pressure, heart rate and respiration with changes in posture and locomotion, the present study examined anatomical evidence for this pathway using anterograde and retrograde tract tracing and immunofluorescence detection in brainstem sections of the rat medulla. The results provide anatomical evidence for direct pathways from the caudal vestibular nuclear complex to the rostral and caudal ventrolateral medullary regions. The projections are conveyed by fine and highly varicose axons that ramify bilaterally, with greater terminal densities present ipsilateral to the injection site and more rostrally in the ventrolateral medulla. In the rostral ventrolateral medulla, these processes are highly branched and extremely varicose, primarily directed toward the somata and proximal dendrites of non-catecholaminergic neurons, with minor projections to the distal dendrites of catecholaminergic cells. In the caudal ventrolateral medulla, the axons of vestibular nucleus neurons are more modestly branched with fewer varicosities, and their endings are contiguous with both the perikarya and dendrites of catecholamine-containing neurons. These data suggest that vestibular neurons preferentially target the rostral ventrolateral medulla, and can thereby provide a morphological basis for a short latency vestibulo-sympathetic pathway.
KW - Vestibular nuclei
KW - Vestibulo-autonomic control
KW - Vestibulo-sympathetic pathways
KW - Vestibulo-sympathetic reflex
UR - http://www.scopus.com/inward/record.url?scp=78951477103&partnerID=8YFLogxK
U2 - 10.1016/j.neuroscience.2010.12.011
DO - 10.1016/j.neuroscience.2010.12.011
M3 - Article
C2 - 21163335
AN - SCOPUS:78951477103
SN - 0306-4522
VL - 175
SP - 104
EP - 117
JO - Neuroscience
JF - Neuroscience
ER -