TY - JOUR
T1 - Differential expression patterns of purinergic ectoenzymes and the antioxidative role of IL-6 in hospitalized COVID-19 patient recovery
AU - Mazzocco, Yanina Luciana
AU - Bergero, Gastón
AU - Del Rosso, Sebastian
AU - Eberhardt, Natalia
AU - Sola, Claudia
AU - Saka, Héctor Alex
AU - Villada, Sofía María
AU - Bocco, José Luis
AU - Aoki, Maria Pilar
N1 - Publisher Copyright:
Copyright © 2023 Mazzocco, Bergero, Del Rosso, Eberhardt, Sola, Saka, Villada, Bocco and Aoki.
PY - 2023
Y1 - 2023
N2 - Introduction: We have acquired significant knowledge regarding the pathogenesis of severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2). However, the underlying mechanisms responsible for disease recovery still need to be fully understood. Methods: To gain insights into critical immune markers involved in COVID-19 etiopathogenesis, we studied the evolution of the immune profile of peripheral blood samples from patients who had recovered from COVID-19 and compared them to subjects with severe acute respiratory illness but negative for SARS-CoV-2 detection (controls). In addition, linear and clustered correlations between different parameters were determined. Results: The data obtained revealed a significant reduction in the frequency of inflammatory monocytes (CD14+CD16+) at hospital discharge vs. admission. Remarkably, nitric oxide (NO) production by the monocyte compartment was significantly reduced at discharge. Furthermore, interleukin (IL)-6 plasma levels were negatively correlated with the frequency of NO+CD14+CD16+ monocytes at hospital admission. However, at the time of hospital release, circulating IL-6 directly correlated with the NO production rate by monocytes. In line with these observations, we found that concomitant with NO diminution, the level of nitrotyrosine (NT) on CD8 T-cells significantly diminished at the time of hospital release. Considering that purinergic signaling constitutes another regulatory system, we analyzed the kinetics of CD39 and CD73 ectoenzyme expression in CD8 T-cells. We found that the frequency of CD39+CD8+ T-cells significantly diminished while the percentage of CD73+ cells increased at hospital discharge. In vitro, IL-6 stimulation of PBMCs from COVID-19 patients diminished the NT levels on CD8 T-cells. A clear differential expression pattern of CD39 and CD73 was observed in the NT+ vs. NT-CD8+ T-cell populations. Discussion: The results suggest that early after infection, IL-6 controls the production of NO, which regulates the levels of NT on CD8 T-cells modifying their effector functions. Intriguingly, in this cytotoxic cell population, the expression of purinergic ectoenzymes is tightly associated with the presence of nitrated surface molecules. Overall, the data obtained contribute to a better understanding of pathogenic mechanisms associated with COVID-19 outcomes.
AB - Introduction: We have acquired significant knowledge regarding the pathogenesis of severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2). However, the underlying mechanisms responsible for disease recovery still need to be fully understood. Methods: To gain insights into critical immune markers involved in COVID-19 etiopathogenesis, we studied the evolution of the immune profile of peripheral blood samples from patients who had recovered from COVID-19 and compared them to subjects with severe acute respiratory illness but negative for SARS-CoV-2 detection (controls). In addition, linear and clustered correlations between different parameters were determined. Results: The data obtained revealed a significant reduction in the frequency of inflammatory monocytes (CD14+CD16+) at hospital discharge vs. admission. Remarkably, nitric oxide (NO) production by the monocyte compartment was significantly reduced at discharge. Furthermore, interleukin (IL)-6 plasma levels were negatively correlated with the frequency of NO+CD14+CD16+ monocytes at hospital admission. However, at the time of hospital release, circulating IL-6 directly correlated with the NO production rate by monocytes. In line with these observations, we found that concomitant with NO diminution, the level of nitrotyrosine (NT) on CD8 T-cells significantly diminished at the time of hospital release. Considering that purinergic signaling constitutes another regulatory system, we analyzed the kinetics of CD39 and CD73 ectoenzyme expression in CD8 T-cells. We found that the frequency of CD39+CD8+ T-cells significantly diminished while the percentage of CD73+ cells increased at hospital discharge. In vitro, IL-6 stimulation of PBMCs from COVID-19 patients diminished the NT levels on CD8 T-cells. A clear differential expression pattern of CD39 and CD73 was observed in the NT+ vs. NT-CD8+ T-cell populations. Discussion: The results suggest that early after infection, IL-6 controls the production of NO, which regulates the levels of NT on CD8 T-cells modifying their effector functions. Intriguingly, in this cytotoxic cell population, the expression of purinergic ectoenzymes is tightly associated with the presence of nitrated surface molecules. Overall, the data obtained contribute to a better understanding of pathogenic mechanisms associated with COVID-19 outcomes.
KW - CD39
KW - CD73
KW - SARS-CoV-2
KW - cytokines
KW - inflammatory monocytes
KW - nitric oxide
KW - nitrotyrosine
UR - http://www.scopus.com/inward/record.url?scp=85173700195&partnerID=8YFLogxK
U2 - 10.3389/fimmu.2023.1227873
DO - 10.3389/fimmu.2023.1227873
M3 - Article
C2 - 37818368
AN - SCOPUS:85173700195
SN - 1664-3224
VL - 14
JO - Frontiers in Immunology
JF - Frontiers in Immunology
M1 - 1227873
ER -