TY - JOUR
T1 - Dietary fat quantity and quality modifies advanced glycation end products metabolism in patients with metabolic syndrome
AU - Lopez-Moreno, Javier
AU - Quintana-Navarro, Gracia M.
AU - Camargo, Antonio
AU - Jimenez-Lucena, Rosa
AU - Delgado-Lista, Javier
AU - Marin, Carmen
AU - Tinahones, Francisco J.
AU - Striker, Gary E.
AU - Roche, Helen M.
AU - Perez-Martinez, Pablo
AU - Lopez-Miranda, Jose
AU - Yubero-Serrano, Elena M.
N1 - Publisher Copyright:
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2017/8
Y1 - 2017/8
N2 - Scope: Advanced glycation end products (AGEs) increase in dysmetabolic conditions. Lifestyle, including diet, has shown be effective in preventing the development of metabolic syndrome (MetS). We investigated whether AGE metabolism is affected by diets with different fat quantity and quality in MetS patients. Methods and results: A randomized, controlled trial assigned 75 MetS patients to one of four diets: high SFA (HSFA), high MUFA (HMUFA), and two low-fat, high-complex carbohydrate diets (LFHCC) supplemented with long-chain n-3 PUFA or placebo for 12-weeks each. Dietary and serum AGE [methylglyoxal (MG: lysine-MG-H1) and N-carboxymethyllysine] levels and gene expression related to AGE metabolism in peripheral blood mononuclear cells (AGER1, RAGE, GloxI, and Sirt1 mRNA) were determined. HMUFA diet reduced serum AGE (sAGE) and RAGE mRNA, increased AGER1 and GloxI mRNA levels compared to the other diets. LFHCC n-3 diet reduced sAGE levels and increased AGER1 mRNA levels compared to LFHCC and HSFA diets. Multiple regression analyses showed that sMG and AGER1 mRNA appeared as significant predictors of oxidative stress/inflammation-related parameters. Conclusions: Low AGE content in HMUFA diet reduces sAGEs and modulates the gene expression related to AGE metabolism in MetS patients, which may be used as a therapeutic approach to reduce the incidence of MetS and related chronic diseases.
AB - Scope: Advanced glycation end products (AGEs) increase in dysmetabolic conditions. Lifestyle, including diet, has shown be effective in preventing the development of metabolic syndrome (MetS). We investigated whether AGE metabolism is affected by diets with different fat quantity and quality in MetS patients. Methods and results: A randomized, controlled trial assigned 75 MetS patients to one of four diets: high SFA (HSFA), high MUFA (HMUFA), and two low-fat, high-complex carbohydrate diets (LFHCC) supplemented with long-chain n-3 PUFA or placebo for 12-weeks each. Dietary and serum AGE [methylglyoxal (MG: lysine-MG-H1) and N-carboxymethyllysine] levels and gene expression related to AGE metabolism in peripheral blood mononuclear cells (AGER1, RAGE, GloxI, and Sirt1 mRNA) were determined. HMUFA diet reduced serum AGE (sAGE) and RAGE mRNA, increased AGER1 and GloxI mRNA levels compared to the other diets. LFHCC n-3 diet reduced sAGE levels and increased AGER1 mRNA levels compared to LFHCC and HSFA diets. Multiple regression analyses showed that sMG and AGER1 mRNA appeared as significant predictors of oxidative stress/inflammation-related parameters. Conclusions: Low AGE content in HMUFA diet reduces sAGEs and modulates the gene expression related to AGE metabolism in MetS patients, which may be used as a therapeutic approach to reduce the incidence of MetS and related chronic diseases.
KW - Advanced glycation end products
KW - Dietary fat
KW - Inflammation
KW - Metabolic syndrome
KW - Oxidative stress
UR - http://www.scopus.com/inward/record.url?scp=85017019709&partnerID=8YFLogxK
U2 - 10.1002/mnfr.201601029
DO - 10.1002/mnfr.201601029
M3 - Article
C2 - 28233454
AN - SCOPUS:85017019709
SN - 1613-4125
VL - 61
JO - Molecular Nutrition and Food Research
JF - Molecular Nutrition and Food Research
IS - 8
M1 - 1601029
ER -