Developmental regulation of somatostatin gene expression in the brain is region specific

William L. Lowe, Anne E. Schaffner, Charles T. Roberts, Derek Leroith

Research output: Contribution to journalArticlepeer-review

53 Scopus citations


Developmental regulation of somatostatin (SRIF) gene expression was studied in five regions of rat brain and in rat stomach. Total RNA was isolated from hypothalamus, cortex, brainstem, cerebellum, and olfactory bulb, as well as stomach at eight stages of development from prenatal day 16 to postnatal day 82. Hybridization of a32P-labeled rat SRIF cDNA probe to Northern blots of total RNA from the above tissues during development demonstrated a single hybridizing band approximately 670 base pairs in length. When SRIF mRNA levels from each stage of development were quantified and normalized by the amount of poly (A)+ RNA present at that stage of development, a unique pattern of SRIF gene expression was seen in each region. In brainstem and cerebellum, SRIF mRNA levels peaked early in development between prenatal day 21 and postnatal day 8 and then declined until postnatal day 82. Hypothalamus and cortex, on the other hand, showed a progressive increase during development with peak levels occurring between postnatal days 13 and 82. In contrast, stomach and olfactory bulb showed SRIF mRNA levels which were low during early development and which rose late in development (postnatal days 13 to 82). Marked differences in the amount of SRIF mRNA within each region were present as well. These data suggest that there is differential expression of the SRIF gene in different regions of the brain and in the stomach during development. Further study of this phenomenon may provide insight into the in vivo control of SRIF gene expression and the role of SRIF in the developing brain.

Original languageEnglish
Pages (from-to)181-187
Number of pages7
JournalMolecular Endocrinology
Issue number2
StatePublished - Feb 1987
Externally publishedYes


Dive into the research topics of 'Developmental regulation of somatostatin gene expression in the brain is region specific'. Together they form a unique fingerprint.

Cite this