TY - JOUR
T1 - Development and validation of an AI-enabled digital breast cancer assay to predict early-stage breast cancer recurrence within 6 years
AU - Fernandez, Gerardo
AU - Prastawa, Marcel
AU - Madduri, Abishek Sainath
AU - Scott, Richard
AU - Marami, Bahram
AU - Shpalensky, Nina
AU - Cascetta, Krystal
AU - Sawyer, Mary
AU - Chan, Monica
AU - Koll, Giovanni
AU - Shtabsky, Alexander
AU - Feliz, Aaron
AU - Hansen, Thomas
AU - Veremis, Brandon
AU - Cordon-Cardo, Carlos
AU - Zeineh, Jack
AU - Donovan, Michael J.
N1 - Funding Information:
This study was funded by PreciseDx.
Funding Information:
We wish to thank Elizabeth Charytonowicz PhD and Nataliya Gladoun MS for their critically important laboratory support and other members of the Department of Pathology at the Icahn School of Medicine at Mount Sinai, New York, NY. We also thank Dr. Elisa Port, MD, Chief of Breast Surgery at Mount Sinai for her continued support in this effort of advancing breast cancer risk assessment. A special thanks goes to Dr. Shabnam Jaffer, MD, Director of Breast Pathology at the Mount Sinai Health System, NYC NY, for her continued support and advice during the development of this project. JetPub Scientific Communications LLC assisted the authors in the preparation of this manuscript, in accordance with Good Publication Practice (GPP3) guidelines.
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: Breast cancer (BC) grading plays a critical role in patient management despite the considerable inter- and intra-observer variability, highlighting the need for decision support tools to improve reproducibility and prognostic accuracy for use in clinical practice. The objective was to evaluate the ability of a digital artificial intelligence (AI) assay (PDxBr) to enrich BC grading and improve risk categorization for predicting recurrence. Methods: In our population-based longitudinal clinical development and validation study, we enrolled 2075 patients from Mount Sinai Hospital with infiltrating ductal carcinoma of the breast. With 3:1 balanced training and validation cohorts, patients were retrospectively followed for a median of 6 years. The main outcome was to validate an automated BC phenotyping system combined with clinical features to produce a binomial risk score predicting BC recurrence at diagnosis. Results: The PDxBr training model (n = 1559 patients) had a C-index of 0.78 (95% CI, 0.76–0.81) versus clinical 0.71 (95% CI, 0.67–0.74) and image feature models 0.72 (95% CI, 0.70–0.74). A risk score of 58 (scale 0–100) stratified patients as low or high risk, hazard ratio (HR) 5.5 (95% CI 4.19–7.2, p < 0.001), with a sensitivity 0.71, specificity 0.77, NPV 0.95, and PPV 0.32 for predicting BC recurrence within 6 years. In the validation cohort (n = 516), the C-index was 0.75 (95% CI, 0.72–0.79) versus clinical 0.71 (95% CI 0.66–0.75) versus image feature models 0.67 (95% CI, 0.63–071). The validation cohort had an HR of 4.4 (95% CI 2.7–7.1, p < 0.001), sensitivity of 0.60, specificity 0.77, NPV 0.94, and PPV 0.24 for predicting BC recurrence within 6 years. PDxBr also improved Oncotype Recurrence Score (RS) performance: RS 31 cutoff, C-index of 0.36 (95% CI 0.26–0.45), sensitivity 37%, specificity 48%, HR 0.48, p = 0.04 versus Oncotype RS plus AI-grade C-index 0.72 (95% CI 0.67–0.79), sensitivity 78%, specificity 49%, HR 4.6, p < 0.001 versus Oncotype RS plus PDxBr, C-index 0.76 (95% CI 0.70–0.82), sensitivity 67%, specificity 80%, HR 6.1, p < 0.001. Conclusions: PDxBr is a digital BC test combining automated AI-BC prognostic grade with clinical–pathologic features to predict the risk of early-stage BC recurrence. With future validation studies, we anticipate the PDxBr model will enrich current gene expression assays and enhance treatment decision-making.
AB - Background: Breast cancer (BC) grading plays a critical role in patient management despite the considerable inter- and intra-observer variability, highlighting the need for decision support tools to improve reproducibility and prognostic accuracy for use in clinical practice. The objective was to evaluate the ability of a digital artificial intelligence (AI) assay (PDxBr) to enrich BC grading and improve risk categorization for predicting recurrence. Methods: In our population-based longitudinal clinical development and validation study, we enrolled 2075 patients from Mount Sinai Hospital with infiltrating ductal carcinoma of the breast. With 3:1 balanced training and validation cohorts, patients were retrospectively followed for a median of 6 years. The main outcome was to validate an automated BC phenotyping system combined with clinical features to produce a binomial risk score predicting BC recurrence at diagnosis. Results: The PDxBr training model (n = 1559 patients) had a C-index of 0.78 (95% CI, 0.76–0.81) versus clinical 0.71 (95% CI, 0.67–0.74) and image feature models 0.72 (95% CI, 0.70–0.74). A risk score of 58 (scale 0–100) stratified patients as low or high risk, hazard ratio (HR) 5.5 (95% CI 4.19–7.2, p < 0.001), with a sensitivity 0.71, specificity 0.77, NPV 0.95, and PPV 0.32 for predicting BC recurrence within 6 years. In the validation cohort (n = 516), the C-index was 0.75 (95% CI, 0.72–0.79) versus clinical 0.71 (95% CI 0.66–0.75) versus image feature models 0.67 (95% CI, 0.63–071). The validation cohort had an HR of 4.4 (95% CI 2.7–7.1, p < 0.001), sensitivity of 0.60, specificity 0.77, NPV 0.94, and PPV 0.24 for predicting BC recurrence within 6 years. PDxBr also improved Oncotype Recurrence Score (RS) performance: RS 31 cutoff, C-index of 0.36 (95% CI 0.26–0.45), sensitivity 37%, specificity 48%, HR 0.48, p = 0.04 versus Oncotype RS plus AI-grade C-index 0.72 (95% CI 0.67–0.79), sensitivity 78%, specificity 49%, HR 4.6, p < 0.001 versus Oncotype RS plus PDxBr, C-index 0.76 (95% CI 0.70–0.82), sensitivity 67%, specificity 80%, HR 6.1, p < 0.001. Conclusions: PDxBr is a digital BC test combining automated AI-BC prognostic grade with clinical–pathologic features to predict the risk of early-stage BC recurrence. With future validation studies, we anticipate the PDxBr model will enrich current gene expression assays and enhance treatment decision-making.
KW - Artificial intelligent image analysis
KW - Breast cancer
KW - Prognostic grade
UR - http://www.scopus.com/inward/record.url?scp=85144261283&partnerID=8YFLogxK
U2 - 10.1186/s13058-022-01592-2
DO - 10.1186/s13058-022-01592-2
M3 - Article
C2 - 36539895
AN - SCOPUS:85144261283
SN - 1465-5411
VL - 24
JO - Breast Cancer Research
JF - Breast Cancer Research
IS - 1
M1 - 93
ER -