Design, synthesis, and preclinical evaluation of new 5,6- (or 6,7-) disubstituted-2-(fluorophenyl)quinolin-4-one derivatives as potent antitumor agents

Li Chen Chou, Meng Tung Tsai, Mei Hua Hsu, Sheng Hung Wang, Tzong Der Way, Chi Hung Huang, Hui Yi Lin, Keduo Qian, Yizhou Dong, Kuo Hsiung Lee, Li Jiau Huang, Sheng Chu Kuo

Research output: Contribution to journalArticlepeer-review

68 Scopus citations

Abstract

Our previous exploration of 2-phenylquinolin-4-ones (2-PQs) has led to an anticancer drug candidate 2-(2-fluorophenyl)-6,7-methylenedioxyquinolin-4-one monosodium phosphate (CHM-1-P-Na). In order to develop additional new drug candidates, novel 2-PQs were designed, synthesized, and evaluated for cytotoxic activity. Most analogues, including 1b, 2a,b, 3a,b, 4a,b, and 5a,b, exhibited significant inhibitory activity (IC50 of 0.03-8.2 μM) against all tested tumor cell lines. As one of the most potent analogue, 2-(3-fluorophenyl)-5-hydroxy-6-methoxyquinolin-4-one (3b) selectively inhibited 14 out of 60 cancer cell lines in a National Cancer Institute (NCI) evaluation. Preliminary mechanism of action study suggested that 3b had a significant effect on the tyrosine autophosphorylation of insulin-like growth factor-1 receptor (IGF-1R). Safety pharmacology profiling of 3b showed no significant effect on normal biological functions of most enzymes tested. Furthermore, sodium 2-(3-fluorophenyl)-6-methoxy-4-oxo-1,4-dihydroquinolin-5-yl phosphate (15), the monophosphate of 3b, exceeded the activity of doxorubicin and was comparable to CHM-1-P-Na in a Hep3B xenograft nude mice model. In summary, 15 is a promising clinical candidate and is currently under preclinical study.

Original languageEnglish
Pages (from-to)8047-8058
Number of pages12
JournalJournal of Medicinal Chemistry
Volume53
Issue number22
DOIs
StatePublished - 25 Nov 2010
Externally publishedYes

Fingerprint

Dive into the research topics of 'Design, synthesis, and preclinical evaluation of new 5,6- (or 6,7-) disubstituted-2-(fluorophenyl)quinolin-4-one derivatives as potent antitumor agents'. Together they form a unique fingerprint.

Cite this