Dependence of the roll angular vestibuloocular reflex (aVOR) on gravity

Sergei B. Yakushin, Yongqing Xiang, Bernard Cohen, Theodore Raphan

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Little is known about the dependence of the roll angular vestibuloocular reflex (aVOR) on gravity or its gravity-dependent adaptive properties. To study gravity-dependent characteristics of the roll aVOR, monkeys were oscillated about a naso-occipital axis in darkness while upright or tilted. Roll aVOR gains were largest in the upright position and decreased by 7-15% as animals were tilted from the upright. Thus the unadapted roll aVOR gain has substantial gravitational dependence. Roll gains were also decreased or increased by 0.25 Hz, in- or out-of-phase rotation of the head and the visual surround while animals were prone, supine, upright, or in side-down positions. Gain changes, determined as a function of head tilt, were fit with a sinusoid; the amplitudes represented the amount of the gravity-dependent gain change, and the bias, the gravity-independent gain change. Gravity-dependent gain changes were absent or substantially smaller in roll (≈5%) than in yaw (25%) or pitch (17%), whereas gravity-independent gain changes were similar for roll, pitch, and yaw (≈20%). Thus the high-frequency roll aVOR gain has an inherent dependence on head orientation re gravity in the unadapted state, which is different from the yaw/pitch aVORs. This inherent gravitational dependence may explain why the adaptive circuits are not active when the head is tilted re gravity during roll aVOR adaptation. These behavioral differences support the idea that there is a fundamental difference in the central organization of canal-otolith convergence of the roll and yaw/pitch aVORs.

Original languageEnglish
Pages (from-to)2616-2626
Number of pages11
JournalJournal of Neurophysiology
Volume102
Issue number5
DOIs
StatePublished - Nov 2009

Fingerprint

Dive into the research topics of 'Dependence of the roll angular vestibuloocular reflex (aVOR) on gravity'. Together they form a unique fingerprint.

Cite this