TY - JOUR
T1 - Delivery of short hairpin RNAs - Triggers of gene silencing - Into mouse embryonic stem cells
AU - Schaniel, Christoph
AU - Li, Feng
AU - Schafer, Xenia L.
AU - Moore, Troy
AU - Lemischka, Ihor R.
AU - Paddison, Patrick J.
PY - 2006/5
Y1 - 2006/5
N2 - During the past 7 years, RNA interference (RNAi) has emerged as a powerful gene-knockdown technology in many model eukaryotic systems because of the functional conservation of the RNAi machinery, and the ease with which exogenous double-stranded RNA (dsRNA) triggers of gene silencing can be delivered into cultured cells and even whole organisms. In mammalian cells, large-scale RNAi screens have now been carried out using both transient RNAi triggers, such as small interfering RNAs (siRNAs) and stably expressed short hairpin RNAs (shRNAs). One area of particular interest in mammals is the application of RNAi in embryonic stem (ES) cells, where RNAi can be used for functional genetic studies and also for specifying particular cell types needed for cell-replacement therapies. Here we report a simple yet effective method for transfecting into mouse ES cells RNA interference triggers, in the form of in vitro synthesized siRNAs or synthetic shRNA3 (Fig. 1). Using this protocol to introduce synthetic shRNAs3 into a Nanog-GFP reporter cell line, we routinely achieve >85% knockdown for target genes. This procedure is readily 'scalable' for high-throughput applications and can be adapted for the delivery of siRNAs, enzymatically cleaved dsRNAs6 and plasmids encoding expressed shRNAs. The protocol describes transfection of mouse ES cells in 24-well tissue culture plates. It can be modified to accommodate any well size by simply scaling the amount of RNA, the number of cells and the volume of medium according to the relative surface area of the well.
AB - During the past 7 years, RNA interference (RNAi) has emerged as a powerful gene-knockdown technology in many model eukaryotic systems because of the functional conservation of the RNAi machinery, and the ease with which exogenous double-stranded RNA (dsRNA) triggers of gene silencing can be delivered into cultured cells and even whole organisms. In mammalian cells, large-scale RNAi screens have now been carried out using both transient RNAi triggers, such as small interfering RNAs (siRNAs) and stably expressed short hairpin RNAs (shRNAs). One area of particular interest in mammals is the application of RNAi in embryonic stem (ES) cells, where RNAi can be used for functional genetic studies and also for specifying particular cell types needed for cell-replacement therapies. Here we report a simple yet effective method for transfecting into mouse ES cells RNA interference triggers, in the form of in vitro synthesized siRNAs or synthetic shRNA3 (Fig. 1). Using this protocol to introduce synthetic shRNAs3 into a Nanog-GFP reporter cell line, we routinely achieve >85% knockdown for target genes. This procedure is readily 'scalable' for high-throughput applications and can be adapted for the delivery of siRNAs, enzymatically cleaved dsRNAs6 and plasmids encoding expressed shRNAs. The protocol describes transfection of mouse ES cells in 24-well tissue culture plates. It can be modified to accommodate any well size by simply scaling the amount of RNA, the number of cells and the volume of medium according to the relative surface area of the well.
UR - http://www.scopus.com/inward/record.url?scp=33646050344&partnerID=8YFLogxK
U2 - 10.1038/nmeth0506-397
DO - 10.1038/nmeth0506-397
M3 - Article
C2 - 16628211
AN - SCOPUS:33646050344
VL - 3
SP - 397
EP - 400
JO - Nature Methods
JF - Nature Methods
SN - 1548-7091
IS - 5
ER -