Abstract
Background Obsessive-compulsive disorder is a chronic psychiatric disorder related to dysfunctional dopaminergic neurotransmission. Deep brain stimulation (DBS) targeted at the nucleus accumbens (NAc) has recently become an effective treatment for therapy-refractory obsessive-compulsive disorder, but its effect on dopaminergic transmission is unknown. Methods We measured the effects of NAc DBS in 15 patients on the dopamine D2/3 receptor availability in the striatum with [123I]iodobenzamide ([123I]IBZM) single photon emission computed tomography. We correlated changes in [ 123I]IBZM binding potential (BP) with plasma levels of homovanillic acid (HVA) and clinical symptoms. Results Acute (1-hour) and chronic (1-year) DBS decreased striatal [123I]IBZM BP compared with the nonstimulated condition in the putamen. BP decreases were observed after 1 hour of stimulation, and chronic stimulation was related to concurrent HVA plasma elevations, implying DBS-induced dopamine release. BP decreases in the area directly surrounding the electrodes were significantly correlated with changes in clinical symptoms (45% symptom decrease). Conclusions NAc DBS induced striatal dopamine release, which was associated with increased HVA plasma levels and improved clinical symptoms, suggesting that DBS may compensate for a defective dopaminergic system.
Original language | English |
---|---|
Pages (from-to) | 647-652 |
Number of pages | 6 |
Journal | Biological Psychiatry |
Volume | 75 |
Issue number | 8 |
DOIs | |
State | Published - 15 Apr 2014 |
Externally published | Yes |
Keywords
- Deep brain stimulation
- dopamine
- homovanillic acid
- neuroimaging
- nucleus accumbens
- obsessive-compulsive disorder