TY - JOUR
T1 - Cyanine Masking
T2 - A Strategy to Test Functional Group Effects on Antibody Conjugate Targeting
AU - Thapaliya, Ek Raj
AU - Usama, Syed Muhammad
AU - Patel, Nimit L.
AU - Feng, Yang
AU - Kalen, Joseph D.
AU - St. Croix, Brad
AU - Schnermann, Martin J.
N1 - Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/4/20
Y1 - 2022/4/20
N2 - Conjugates of small molecules and antibodies are broadly employed diagnostic and therapeutic agents. Appending a small molecule to an antibody often significantly impacts the properties of the resulting conjugate. Here, we detail a systematic study investigating the effect of various functional groups on the properties of antibody-fluorophore conjugates. This was done through the preparation and analysis of a series of masked heptamethine cyanines (CyMasks)-bearing amides with varied functional groups. These were designed to exhibit a broad range of physical properties, and include hydrophobic (-NMe2), pegylated (NH-PEG-8 or NH-PEG-24), cationic (NH-(CH2)2NMe3+), anionic (NH-(CH2)2SO3-), and zwitterionic (N-(CH2)2NMe3+)-(CH2)3SO3-) variants. The CyMask series was appended to monoclonal antibodies (mAbs) and analyzed for the effects on tumor targeting, clearance, and non-specific organ uptake. Among the series, zwitterionic and pegylated dye conjugates had the highest tumor-to-background ratio (TBR) and a low liver-to-background ratio. By contrast, the cationic and zwitterionic probes had high tumor signal and high TBR, although the latter also exhibited an elevated liver-to-background ratio (LBR). Overall, these studies provide a strategy to test the functional group effects and suggest that zwitterionic substituents possess an optimal combination of high tumor signal, TBR, and low LBR. These results suggest an appealing strategy to mask hydrophobic payloads, with the potential to improve the properties of bioconjugates in vivo.
AB - Conjugates of small molecules and antibodies are broadly employed diagnostic and therapeutic agents. Appending a small molecule to an antibody often significantly impacts the properties of the resulting conjugate. Here, we detail a systematic study investigating the effect of various functional groups on the properties of antibody-fluorophore conjugates. This was done through the preparation and analysis of a series of masked heptamethine cyanines (CyMasks)-bearing amides with varied functional groups. These were designed to exhibit a broad range of physical properties, and include hydrophobic (-NMe2), pegylated (NH-PEG-8 or NH-PEG-24), cationic (NH-(CH2)2NMe3+), anionic (NH-(CH2)2SO3-), and zwitterionic (N-(CH2)2NMe3+)-(CH2)3SO3-) variants. The CyMask series was appended to monoclonal antibodies (mAbs) and analyzed for the effects on tumor targeting, clearance, and non-specific organ uptake. Among the series, zwitterionic and pegylated dye conjugates had the highest tumor-to-background ratio (TBR) and a low liver-to-background ratio. By contrast, the cationic and zwitterionic probes had high tumor signal and high TBR, although the latter also exhibited an elevated liver-to-background ratio (LBR). Overall, these studies provide a strategy to test the functional group effects and suggest that zwitterionic substituents possess an optimal combination of high tumor signal, TBR, and low LBR. These results suggest an appealing strategy to mask hydrophobic payloads, with the potential to improve the properties of bioconjugates in vivo.
UR - http://www.scopus.com/inward/record.url?scp=85128778558&partnerID=8YFLogxK
U2 - 10.1021/acs.bioconjchem.2c00083
DO - 10.1021/acs.bioconjchem.2c00083
M3 - Article
C2 - 35389618
AN - SCOPUS:85128778558
SN - 1043-1802
VL - 33
SP - 718
EP - 725
JO - Bioconjugate Chemistry
JF - Bioconjugate Chemistry
IS - 4
ER -