CVID-associated TACI mutations affect autoreactive B cell selection and activation

Neil Romberg, Nicolas Chamberlain, David Saadoun, Maurizio Gentile, Tuure Kinnunen, Yen Shing Ng, Manmeet Virdee, Laurence Menard, Tineke Cantaert, Henner Morbach, Rima Rachid, Natalia Martinez-Pomar, Nuria Matamoros, Raif Geha, Bodo Grimbacher, Andrea Cerutti, Charlotte Cunningham-Rundles, Eric Meffre

Research output: Contribution to journalArticlepeer-review

131 Scopus citations


Common variable immune deficiency (CVID) is an assorted group of primary diseases that clinically manifest with antibody deficiency, infection susceptibility, and autoimmunity. Heterozygous mutations in the gene encoding the tumor necrosis factor receptor superfamily member TACI are associated with CVID and autoimmune manifestations, whereas two mutated alleles prevent autoimmunity. To assess how the number of TACI mutations affects B cell activation and tolerance checkpoints, we analyzed healthy individuals and CVID patients carrying one or two TACI mutations. We found that TACI interacts with the cleaved, mature forms of TLR7 and TLR9 and plays an important role during B cell activation and the central removal of autoreactive B cells in healthy donors and CVID patients. However, only subjects with a single TACI mutation displayed a breached immune tolerance and secreted antinuclear antibodies (ANAs). These antibodies were associated with the presence of circulating B cell lymphoma 6-expressing T follicular helper (Tfh) cells, likely stimulating autoreactive B cells. Thus, TACI mutations may favor CVID by altering B cell activation with coincident impairment of central B cell tolerance, whereas residual B cell responsiveness in patients with one, but not two, TACI mutations enables autoimmune complications.

Original languageEnglish
Pages (from-to)4283-4293
Number of pages11
JournalJournal of Clinical Investigation
Issue number10
StatePublished - 1 Oct 2013


Dive into the research topics of 'CVID-associated TACI mutations affect autoreactive B cell selection and activation'. Together they form a unique fingerprint.

Cite this