TY - JOUR
T1 - Crosstalk between presynaptic trafficking and autophagy in Parkinson's disease
AU - Pan, Ping Yue
AU - Zhu, Yingbo
AU - Shen, Yuan
AU - Yue, Zhenyu
N1 - Publisher Copyright:
© 2018
PY - 2019/2
Y1 - 2019/2
N2 - Parkinson's disease (PD) is a debilitating neurodegenerative disorder that profoundly affects one's motor functions. The disease is characterized pathologically by denervation of dopaminergic (DAergic) nigrostriatal terminal and degeneration of DAergic neurons in the substantia nigra par compacta (SNpc); however, the precise molecular mechanism underlying disease pathogenesis remains poorly understood. Animal studies in both toxin-induced and genetic PD models suggest that presynaptic impairments may underlie the early stage of DA depletion and neurodegeneration (reviewed in Schirinzi, T., et al. 2016). Supporting this notion, human genetic studies and genomic analysis have identified an increasing number of PD risk variants that are associated with synaptic vesicle (SV) trafficking, regulation of synaptic function and autophagy/lysosomal system (Chang, D., et al. 2017, reviewed in Trinh, J. & Farrer, M. 2013; Singleton, A.B., et al. 2013). Although the precise mechanism for autophagy regulation in neurons is currently unclear, many studies demonstrate that autophagosomes form at the presynaptic terminal (Maday, S. & Holzbaur, E.L. 2014; Vanhauwaert, R., et al. 2017; reviewed in Yue, Z. 2007). Growing evidence has revealed overlapping genes involved in both SV recycling and autophagy, suggesting that the two membrane trafficking processes are inter-connected. Here we will review emergent evidence linking SV endocytic genes and autophagy genes at the presynaptic terminal. We will discuss their potential relevance to PD pathogenesis.
AB - Parkinson's disease (PD) is a debilitating neurodegenerative disorder that profoundly affects one's motor functions. The disease is characterized pathologically by denervation of dopaminergic (DAergic) nigrostriatal terminal and degeneration of DAergic neurons in the substantia nigra par compacta (SNpc); however, the precise molecular mechanism underlying disease pathogenesis remains poorly understood. Animal studies in both toxin-induced and genetic PD models suggest that presynaptic impairments may underlie the early stage of DA depletion and neurodegeneration (reviewed in Schirinzi, T., et al. 2016). Supporting this notion, human genetic studies and genomic analysis have identified an increasing number of PD risk variants that are associated with synaptic vesicle (SV) trafficking, regulation of synaptic function and autophagy/lysosomal system (Chang, D., et al. 2017, reviewed in Trinh, J. & Farrer, M. 2013; Singleton, A.B., et al. 2013). Although the precise mechanism for autophagy regulation in neurons is currently unclear, many studies demonstrate that autophagosomes form at the presynaptic terminal (Maday, S. & Holzbaur, E.L. 2014; Vanhauwaert, R., et al. 2017; reviewed in Yue, Z. 2007). Growing evidence has revealed overlapping genes involved in both SV recycling and autophagy, suggesting that the two membrane trafficking processes are inter-connected. Here we will review emergent evidence linking SV endocytic genes and autophagy genes at the presynaptic terminal. We will discuss their potential relevance to PD pathogenesis.
KW - Autophagy
KW - Endophilin
KW - LRRK2
KW - Parkinson's disease
KW - Synaptic vesicle
KW - Synaptojanin
KW - a-synuclein
UR - http://www.scopus.com/inward/record.url?scp=85046795626&partnerID=8YFLogxK
U2 - 10.1016/j.nbd.2018.04.020
DO - 10.1016/j.nbd.2018.04.020
M3 - Review article
C2 - 29723605
AN - SCOPUS:85046795626
SN - 0969-9961
VL - 122
SP - 64
EP - 71
JO - Neurobiology of Disease
JF - Neurobiology of Disease
ER -