TY - JOUR
T1 - Correcting miR-15a/16 genetic defect in New Zealand Black mouse model of CLL enhances drug sensitivity
AU - Salerno, Erica
AU - Scaglione, Brian J.
AU - Coffman, Frederick D.
AU - Brown, Brian D.
AU - Baccarini, Alessia
AU - Fernandes, Helen
AU - Marti, Gerald
AU - Raveche, Elizabeth S.
PY - 2009/9/1
Y1 - 2009/9/1
N2 - Alterations in the human 13q14 genomic region containing microRNAs mir-15a and mir-16-1 are present in most human chronic lymphocytic leukemia (CLL). We have previously found the development of CLL in the New Zealand Black murine model to be associated with a point mutation in the primary mir-15a/16-1 region, which correlated with a decrease in mature miR-16 and miR-15a levels. In this study, addition of exogenous miR-15a and miR-16 led to an accumulation of cells in G1 in non-New Zealand Black B cell and New Zealand Black-derived malignant B-1 cell lines. However, the New Zealand Black line had significantly greater G1 accumulation, suggesting a restoration of cell cycle control upon exogenous miR-15a/16 addition. Our experiments showed a reduction in protein levels of cyclin D1, a miR-15a/16 target and cell cycle regulator of G1/S transition, in the New Zealand Black cell line following miR-15a/16 addition. These microRNAs were shown to directly target the cyclin D1 3′ untranslated region using a green fluorescent protein lentiviral expression system. miR-16 was also shown to augment apoptosis induction by nutlin, a mouse double minute 2 (MDM2) antagonist, and genistein, a tyrosine kinase inhibitor, when added to a B-1 cell line derived from multiple in vivo passages of malignant B-1 cells from New Zealand Black mice with CLL. miR-16 synergized with nutlin and genistein to induce apoptosis. Our data support a role for the mir-15a/16-1 cluster in cell cycle regulation and suggest that these mature microRNAs in both the New Zealand Black model and human CLL may be targets for therapeutic efficacy in this disease.
AB - Alterations in the human 13q14 genomic region containing microRNAs mir-15a and mir-16-1 are present in most human chronic lymphocytic leukemia (CLL). We have previously found the development of CLL in the New Zealand Black murine model to be associated with a point mutation in the primary mir-15a/16-1 region, which correlated with a decrease in mature miR-16 and miR-15a levels. In this study, addition of exogenous miR-15a and miR-16 led to an accumulation of cells in G1 in non-New Zealand Black B cell and New Zealand Black-derived malignant B-1 cell lines. However, the New Zealand Black line had significantly greater G1 accumulation, suggesting a restoration of cell cycle control upon exogenous miR-15a/16 addition. Our experiments showed a reduction in protein levels of cyclin D1, a miR-15a/16 target and cell cycle regulator of G1/S transition, in the New Zealand Black cell line following miR-15a/16 addition. These microRNAs were shown to directly target the cyclin D1 3′ untranslated region using a green fluorescent protein lentiviral expression system. miR-16 was also shown to augment apoptosis induction by nutlin, a mouse double minute 2 (MDM2) antagonist, and genistein, a tyrosine kinase inhibitor, when added to a B-1 cell line derived from multiple in vivo passages of malignant B-1 cells from New Zealand Black mice with CLL. miR-16 synergized with nutlin and genistein to induce apoptosis. Our data support a role for the mir-15a/16-1 cluster in cell cycle regulation and suggest that these mature microRNAs in both the New Zealand Black model and human CLL may be targets for therapeutic efficacy in this disease.
UR - http://www.scopus.com/inward/record.url?scp=70349495864&partnerID=8YFLogxK
U2 - 10.1158/1535-7163.MCT-09-0127
DO - 10.1158/1535-7163.MCT-09-0127
M3 - Article
C2 - 19723889
AN - SCOPUS:70349495864
SN - 1535-7163
VL - 8
SP - 2684
EP - 2692
JO - Molecular Cancer Therapeutics
JF - Molecular Cancer Therapeutics
IS - 9
ER -