TY - JOUR
T1 - Cooperative transcriptional activation by serum response factor and the high mobility group protein SSRP1
AU - Spencer, Jeffrey A.
AU - Baron, Margaret H.
AU - Olson, Eric N.
PY - 1999/5/28
Y1 - 1999/5/28
N2 - Serum response factor (SRF) is a MADS box transcription factor that controls a wide range of genes involved in cell proliferation and differentiation. The MADS box mediates homodimerization and binding of SRF to the consensus sequence CC(A/T)6GG, known as a CArG box, which is found in the control regions of numerous serum-inducible and muscle-specific genes. Using a modified yeast one-hybrid screen to identify potential SRF cofactors, we found that SRF interacts with the high mobility group factor SSRP1 (structure-specific recognition protein). This interaction, which occurs in yeast and mammalian cells, is mediated through the MADS box of SRF and a basic region of SSRP1 encompassing amino acids 489-542, immediately adjacent to the high mobility group domain. SSRP1 does not bind the CArG box, but interaction of SSRP1 with SRF dramatically increases the DNA binding activity of SRF, resulting in synergistic transcriptional activation of native and artificial SRF-dependent promoters. These results reveal an important role for SSRP1 as a coregulator of SRF-dependent transcription in mammalian cells.
AB - Serum response factor (SRF) is a MADS box transcription factor that controls a wide range of genes involved in cell proliferation and differentiation. The MADS box mediates homodimerization and binding of SRF to the consensus sequence CC(A/T)6GG, known as a CArG box, which is found in the control regions of numerous serum-inducible and muscle-specific genes. Using a modified yeast one-hybrid screen to identify potential SRF cofactors, we found that SRF interacts with the high mobility group factor SSRP1 (structure-specific recognition protein). This interaction, which occurs in yeast and mammalian cells, is mediated through the MADS box of SRF and a basic region of SSRP1 encompassing amino acids 489-542, immediately adjacent to the high mobility group domain. SSRP1 does not bind the CArG box, but interaction of SSRP1 with SRF dramatically increases the DNA binding activity of SRF, resulting in synergistic transcriptional activation of native and artificial SRF-dependent promoters. These results reveal an important role for SSRP1 as a coregulator of SRF-dependent transcription in mammalian cells.
UR - http://www.scopus.com/inward/record.url?scp=0033025520&partnerID=8YFLogxK
U2 - 10.1074/jbc.274.22.15686
DO - 10.1074/jbc.274.22.15686
M3 - Article
C2 - 10336466
AN - SCOPUS:0033025520
SN - 0021-9258
VL - 274
SP - 15686
EP - 15693
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 22
ER -