Convective Dynamos with Intermediate and Strong Fields

Yves Fautrelle, Stephen Childress

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

The weak-field Benard-type dynamo treated by Soward is considered here at higher levels of the induced magnetic field. Two sources of instability are found to occur in the intermediate field regime M - T'''’, where M and T are the Hartmann and Taylor numbers. On the time scale of magnetic diffusion, solutions may blow up in finite time owing to destabilization of the convection by the magnetic field. On a faster time scale a dynamic instability related to MAC-wave instability can also occur. It is therefore concluded that the asymptotic structure of this dynamo is unstable to virtual increases in the magnetic field energy. In an attempt to model stabilization of the dynamo in a strong-field regme we consider two approximations. In the first, a truncated expansion in three-dimensional plane waves is studied numerically. A second approach utilizes an ad hoc set of ordinary differential equations which contains many of the features of convection dynamos at all field energies. Both of these models exhibit temporal intermittency of the dynamo effect.

Original languageEnglish
Pages (from-to)235-279
Number of pages45
JournalGeophysical and Astrophysical Fluid Dynamics
Volume22
Issue number3-4
DOIs
StatePublished - 1 Dec 1982
Externally publishedYes

Fingerprint

Dive into the research topics of 'Convective Dynamos with Intermediate and Strong Fields'. Together they form a unique fingerprint.

Cite this