TY - JOUR
T1 - Concussion Incidence in Professional Football
T2 - Position-Specific Analysis With Use of a Novel Metric
AU - Nathanson, John T.
AU - Connolly, James G.
AU - Yuk, Frank
AU - Gometz, Alex
AU - Rasouli, Jonathan
AU - Lovell, Mark
AU - Choudhri, Tanvir
N1 - Publisher Copyright:
© 2016, © The Author(s) 2016.
PY - 2016/1/27
Y1 - 2016/1/27
N2 - Background: In the United States alone, millions of athletes participate in sports with potential for head injury each year. Although poorly understood, possible long-term neurological consequences of repetitive sports-related concussions have received increased recognition and attention in recent years. A better understanding of the risk factors for concussion remains a public health priority. Despite the attention focused on mild traumatic brain injury (mTBI) in football, gaps remain in the understanding of the optimal methodology to determine concussion incidence and position-specific risk factors. Purpose: To calculate the rates of concussion in professional football players using established and novel metrics on a group and position-specific basis. Study Design: Case-control study; Level of evidence, 3. Methods: Athletes from the 2012-2013 and 2013-2014 National Football League (NFL) seasons were included in this analysis of publicly available data. Concussion incidence rates were analyzed using established (athlete exposure [AE], game position [GP]) and novel (position play [PP]) metrics cumulatively, by game unit and position type (offensive skill players and linemen, defensive skill players and linemen), and by position. Results: In 480 games, there were 292 concussions, resulting in 0.61 concussions per game (95% CI, 0.54-0.68), 6.61 concussions per 1000 AEs (95% CI, 5.85-7.37), 1.38 concussions per 100 GPs (95% CI, 1.22-1.54), and 0.17 concussions per 1000 PPs (95% CI, 0.15-0.19). Depending on the method of calculation, the relative order of at-risk positions changed. In addition, using the PP metric, offensive skill players had a significantly greater rate of concussion than offensive linemen, defensive skill players, and defensive linemen (P <;.05). Conclusion: For this study period, concussion incidence by position and unit varied depending on which metric was used. Compared with AE and GP, the PP metric found that the relative risk of concussion for offensive skill players was significantly greater than other position types. The strengths and limitations of various concussion incidence metrics need further evaluation. Clinical Relevance: A better understanding of the relative risks of the different positions/units is needed to help athletes, team personnel, and medical staff make optimal player safety decisions and enhance rules and equipment.
AB - Background: In the United States alone, millions of athletes participate in sports with potential for head injury each year. Although poorly understood, possible long-term neurological consequences of repetitive sports-related concussions have received increased recognition and attention in recent years. A better understanding of the risk factors for concussion remains a public health priority. Despite the attention focused on mild traumatic brain injury (mTBI) in football, gaps remain in the understanding of the optimal methodology to determine concussion incidence and position-specific risk factors. Purpose: To calculate the rates of concussion in professional football players using established and novel metrics on a group and position-specific basis. Study Design: Case-control study; Level of evidence, 3. Methods: Athletes from the 2012-2013 and 2013-2014 National Football League (NFL) seasons were included in this analysis of publicly available data. Concussion incidence rates were analyzed using established (athlete exposure [AE], game position [GP]) and novel (position play [PP]) metrics cumulatively, by game unit and position type (offensive skill players and linemen, defensive skill players and linemen), and by position. Results: In 480 games, there were 292 concussions, resulting in 0.61 concussions per game (95% CI, 0.54-0.68), 6.61 concussions per 1000 AEs (95% CI, 5.85-7.37), 1.38 concussions per 100 GPs (95% CI, 1.22-1.54), and 0.17 concussions per 1000 PPs (95% CI, 0.15-0.19). Depending on the method of calculation, the relative order of at-risk positions changed. In addition, using the PP metric, offensive skill players had a significantly greater rate of concussion than offensive linemen, defensive skill players, and defensive linemen (P <;.05). Conclusion: For this study period, concussion incidence by position and unit varied depending on which metric was used. Compared with AE and GP, the PP metric found that the relative risk of concussion for offensive skill players was significantly greater than other position types. The strengths and limitations of various concussion incidence metrics need further evaluation. Clinical Relevance: A better understanding of the relative risks of the different positions/units is needed to help athletes, team personnel, and medical staff make optimal player safety decisions and enhance rules and equipment.
KW - National Football League
KW - athlete exposures
KW - concussion
KW - concussion incidence
KW - game positions
KW - mTBI
KW - position plays
KW - risk assessment
UR - http://www.scopus.com/inward/record.url?scp=84978997742&partnerID=8YFLogxK
U2 - 10.1177/2325967115622621
DO - 10.1177/2325967115622621
M3 - Article
AN - SCOPUS:84978997742
SN - 2325-9671
VL - 4
JO - Orthopaedic Journal of Sports Medicine
JF - Orthopaedic Journal of Sports Medicine
IS - 1
ER -