Compressive strength of the mineral reinforced aluminium alloy composite

Rama Arora, Anju Sharma, Suresh Kumar, Gurmel Singh, O. P. Pandey

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

This paper presents the results of quasi-static compressive strength of aluminium alloy reinforced with different concentration of rutile mineral particles. The reinforced material shows increase in compressive strength with 5wt% rutile concentration as compared to the base alloy. This increase in compressive strength of composite is attributed to direct strengthening due to transfer of load from lower stiffness matrix (LM13 alloy) to higher stiffness reinforcement (rutile particles). Indirect strengthening mechanisms like increase in dislocation density at the matrix-reinforcement interface, grain size refinement of the matrix and dispersion strengthening are also the contributing factors. The decrease in compressive strength of composite with the increased concentration of rutile concentration beyond 5 wt.% can be attributed to the increase in dislocation density due to the void formation at the matrix-reinforcement interface.

Original languageEnglish
Title of host publicationInternational Conference on Condensed Matter and Applied Physics, ICC 2015
Subtitle of host publicationProceeding of International Conference on Condensed Matter and Applied Physics
EditorsManoj Singh Shekhawat, Sudhir Bhardwaj, Bhuvneshwer Suthar
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735413757
DOIs
StatePublished - 6 May 2016
Externally publishedYes
EventInternational Conference on Condensed Matter and Applied Physics, ICC 2015 - Bikaner, India
Duration: 30 Oct 201531 Oct 2015

Publication series

NameAIP Conference Proceedings
Volume1728
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

ConferenceInternational Conference on Condensed Matter and Applied Physics, ICC 2015
Country/TerritoryIndia
CityBikaner
Period30/10/1531/10/15

Fingerprint

Dive into the research topics of 'Compressive strength of the mineral reinforced aluminium alloy composite'. Together they form a unique fingerprint.

Cite this