Abstract
Excessive inflammatory cytokines play crucial roles in the pathogenesis of rheumatoid arthritis (RA), however, the underlying mechanism remains unclear. In this study, we demonstrated that pentaxin 3 (PTX3), an essential component of innate immunity, was elevated in RA and preferentially bound to CD14+ monocytes. C1q promoted the binding and resulted in increased cell proliferation, activation and caspase-1-related late apoptotic cells (7-AAD+annexin V+), as well as enhanced release of inflammatory cytokines including TNF-α, IL-1β and IL-6. Serum from RA patients, compared with healthy controls, induced gasdermin D (GSDMD)-dependent pyroptosis in monocytes, and this ability was associated with disease activity. Moreover, PTX3 synergized with C1q to promote pyroptosis in RA-serum pre-incubated monocytes by coordinately enhancing NLRP3 inflammasome over-activation and inducing GSDMD cleavage, cell swelling with large bubbles, caspase-1-dependent cell death and inflammatory cytokine release including IL-6. On the other hand, IL-6 promoted PTX3 plus C1q-induced pyroptosis in both normal and RA serum pre-incubated monocytes. These findings collectively implicated an important role of IL-6 in driving PTX3 plus C1q-mediated pyroptosis in RA and shed lights on a potential new treatment strategy targeting pyroptosis-mediated persistent inflammatory cytokine release.
Original language | English |
---|---|
Article number | 102336 |
Journal | Journal of Autoimmunity |
Volume | 106 |
DOIs | |
State | Published - Jan 2020 |
Externally published | Yes |
Keywords
- C1q
- IL-6
- Pentaxin 3
- Pyroptosis
- Rheumatoid arthritis