Complement activation by human monoclonal antibodies to human immunodeficiency virus

Gregory T. Spear, Daniel M. Takefman, Brenda L. Sullivan, Alan L. Landay, Susan Zolla-Pazner

Research output: Contribution to journalArticlepeer-review

68 Scopus citations


It has been shown that the incubation of human immunodeficiency virus (HIV) with polyclonal antibodies from HIV-infected persons and complement results in complement-mediated neutralization due, at least in part, to virolysis. The current study was performed to determine whether any of a panel of 16 human monoclonal antibodies to HIV could activate complement and, if so, which determinants of the HIV envelope could serve as targets for antibody-dependent complement-mediated effects. Human monoclonal antibodies directed to the third variable region (V3 region) of HIVMN gp120 induced C3 deposition on infected cells and virolysis of free virus. Antibodies to two other sites on HIVMN gp120 and two sites on gp41 induced few or no complement-mediated effects. Similarly, only anti-V3 antibodies efficiently caused complement-mediated effects on the HIVIIIB, isolate. In general, the level of C3 deposition on infected cells paralleled the relative level of bound monoclonal antibodies. As expected, pooled polyclonal antibodies from infected persons were much more efficient than monoclonal antibodies inducing C3 deposition per unit of bound immunoglobulin. Treatment of virus or infected cells with soluble CD4 resulted in increases in anti-gp41 antibody-mediated virolysis and C3 deposition but decreases in anti-V3 antibody-mediated virolysis and C3 deposition. In general, virolysis of HiV was more sensitive as an indicator of complement-mediated effects than infected-cell surface C3 deposition, suggesting the absence of or reduced expression of functional complement control proteins on the surface of free virus. Thus, this study shows that human monoclonal antibodies to the V3 region of gp120 are most efficient in causing virolysis of free virus and C3 deposition on infected cells. Elution of gp120 with soluble CD4 exposes epitopes on gp41 that can also bind antibody, resulting in virolysis and C3 deposition. These findings establish a serologically defined model system for the further study of the interaction of complement and HIV.

Original languageEnglish
Pages (from-to)53-59
Number of pages7
JournalJournal of Virology
Issue number1
StatePublished - Jan 1993
Externally publishedYes


Dive into the research topics of 'Complement activation by human monoclonal antibodies to human immunodeficiency virus'. Together they form a unique fingerprint.

Cite this