TY - JOUR
T1 - Comparative magnitude of cross-strain conservation of HIV variable loop neutralization epitopes
AU - Swetnam, James
AU - Shmelkov, Evgeny
AU - Zolla-Pazner, Susan
AU - Cardozo, Timothy
PY - 2010
Y1 - 2010
N2 - Although the sequence variable loops of the human immunodeficiency virus' (HIV-1) surface envelope glycoprotein (gp120) can exhibit good immunogenicity, characterizing conserved (invariant) cross-strain neutralization epitopes within these loops has proven difficult. We recently developed a method to derive sensitive and specific signature motifs for the threedimensional (3D) shapes of the HIV-1 neutralization epitopes in the third variable (V3) loop of gp120 that are recognized by human monoclonal antibodies (mAbs). We used the signature motif method to estimate the conservation of these epitopes across circulating worldwide HIV-1 strains. The epitope targeted by the anti-V3 loop neutralizing mAb 3074 is present in 87% of circulating strains, distributed nearly evenly among all subtypes. The results for other anti-V3 Abs are: 3791, present in 63% of primarily non-B subtypes; 2219, present in 56% of strains across all subtypes; 2557, present in 52% across all subtypes; 447-52D, present in 11% of primarily subtype B strains; 537-10D, present in 9% of primarily subtype B strains; and 268-D, present in 5% of primarily subtype B strains. The estimates correlate with in vitro tests of these mAbs against diverse viral panels. The mAb 3074 thus targets an epitope that is nearly completely conserved among circulating HIV-1 strains, demonstrating the presence of an invariant structure hidden in the dynamic and sequence-variable V3 loop in gp120. Since some variable loop regions are naturally immunogenic, designing immunogens to mimic their conserved epitopes may be a promising vaccine discovery approach. Our results suggest one way to quantify and compare the magnitude of the conservation.
AB - Although the sequence variable loops of the human immunodeficiency virus' (HIV-1) surface envelope glycoprotein (gp120) can exhibit good immunogenicity, characterizing conserved (invariant) cross-strain neutralization epitopes within these loops has proven difficult. We recently developed a method to derive sensitive and specific signature motifs for the threedimensional (3D) shapes of the HIV-1 neutralization epitopes in the third variable (V3) loop of gp120 that are recognized by human monoclonal antibodies (mAbs). We used the signature motif method to estimate the conservation of these epitopes across circulating worldwide HIV-1 strains. The epitope targeted by the anti-V3 loop neutralizing mAb 3074 is present in 87% of circulating strains, distributed nearly evenly among all subtypes. The results for other anti-V3 Abs are: 3791, present in 63% of primarily non-B subtypes; 2219, present in 56% of strains across all subtypes; 2557, present in 52% across all subtypes; 447-52D, present in 11% of primarily subtype B strains; 537-10D, present in 9% of primarily subtype B strains; and 268-D, present in 5% of primarily subtype B strains. The estimates correlate with in vitro tests of these mAbs against diverse viral panels. The mAb 3074 thus targets an epitope that is nearly completely conserved among circulating HIV-1 strains, demonstrating the presence of an invariant structure hidden in the dynamic and sequence-variable V3 loop in gp120. Since some variable loop regions are naturally immunogenic, designing immunogens to mimic their conserved epitopes may be a promising vaccine discovery approach. Our results suggest one way to quantify and compare the magnitude of the conservation.
UR - http://www.scopus.com/inward/record.url?scp=78650833474&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0015994
DO - 10.1371/journal.pone.0015994
M3 - Article
C2 - 21209919
AN - SCOPUS:78650833474
SN - 1932-6203
VL - 5
JO - PLoS ONE
JF - PLoS ONE
IS - 12
M1 - e15994
ER -