Common and species-specific molecular signatures, networks, and regulators of influenza virus infection in mice, ferrets, and humans

Christian V. Forst, Laura Martin-Sancho, Shashank Tripathi, Guojun Wang, Luiz Gustavo Dos Anjos Borges, Minghui Wang, Adam Geber, Lauren Lashua, Tao Ding, Xianxiao Zhou, Chalise E. Carter, Giorgi Metreveli, Ariel Rodriguez-Frandsen, Matthew D. Urbanowski, Kris M. White, David A. Stein, Hong Moulton, Sumit K. Chanda, Lars Pache, Megan L. ShawTed M. Ross, Elodie Ghedin, Adolfo García-Sastre, Bin Zhang

Research output: Contribution to journalArticlepeer-review

Abstract

Molecular responses to influenza A virus (IAV) infections vary between mammalian species. To identify conserved and species-specific molecular responses, we perform a comparative study of transcriptomic data derived from blood cells, primary epithelial cells, and lung tissues collected from IAV-infected humans, ferrets, and mice. The molecular responses in the human host have unique functions such as antigen processing that are not observed in mice or ferrets. Highly conserved gene coexpression modules across the three species are enriched for IAV infection–induced pathways including cell cycle and interferon (IFN) signaling. TDRD7 is predicted as an IFN-inducible host factor that is up-regulated upon IAV infection in the three species. TDRD7 is required for antiviral IFN response, potentially modulating IFN signaling via the JAK/STAT/IRF9 pathway. Identification of the common and species-specific molecular signatures, networks, and regulators of IAV infection provides insights into host-defense mechanisms and will facilitate the development of novel therapeutic interventions against IAV infection.

Original languageEnglish
Article numbereabm5859
JournalScience advances
Volume8
Issue number40
DOIs
StatePublished - Oct 2022

Fingerprint

Dive into the research topics of 'Common and species-specific molecular signatures, networks, and regulators of influenza virus infection in mice, ferrets, and humans'. Together they form a unique fingerprint.

Cite this