TY - JOUR
T1 - Characterization of the FoxL2 proximal promoter and coding sequence from the common snapping turtle (Chelydra serpentina)
AU - Guo, Lei
AU - Rhen, Turk
N1 - Publisher Copyright:
© 2017 Elsevier Inc.
PY - 2017/10
Y1 - 2017/10
N2 - Sex is determined by temperature during embryogenesis in snapping turtles, Chelydra serpentina. Previous studies in this species show that dihydrotestosterone (DHT) induces ovarian development at temperatures that normally produce males or mixed sex ratios. The feminizing effect of DHT is associated with increased expression of FoxL2, suggesting that androgens regulate transcription of FoxL2. To test this hypothesis, we cloned the proximal promoter (1.6 kb) and coding sequence for snapping turtle FoxL2 (tFoxL2) in frame with mCherry to produce a fluorescent reporter. The tFoxL2-mCherry fusion plasmid or mCherry control plasmid were stably transfected into mouse KK1 granulosa cells. These cells were then treated with 0, 1, 10, or 100 nM DHT to assess androgen effects on tFoxL2-mCherry expression. In contrast to the main hypothesis, DHT did not alter expression of the tFoxL2-mCherry reporter. However, normal serum increased expression of tFoxL2-mCherry when compared to charcoal-stripped serum, indicating that the cloned region of tFoxL2 contains cis regulatory elements. We also used the tFoxL2-mCherry plasmid as an expression vector to test the hypothesis that DHT and tFoxL2 interact to regulate expression of endogenous genes in granulosa cells. While tFoxL2-mCherry and DHT had independent effects on mouse FoxL2, FshR, GnRHR, and StAR expression, tFoxL2-mCherry potentiated low concentration DHT effects on mouse aromatase expression. Further studies will be required to determine whether synergistic regulation of aromatase by DHT and FoxL2 also occurs in turtle gonads during the sex-determining period, which would explain the feminizing effect of DHT in this species.
AB - Sex is determined by temperature during embryogenesis in snapping turtles, Chelydra serpentina. Previous studies in this species show that dihydrotestosterone (DHT) induces ovarian development at temperatures that normally produce males or mixed sex ratios. The feminizing effect of DHT is associated with increased expression of FoxL2, suggesting that androgens regulate transcription of FoxL2. To test this hypothesis, we cloned the proximal promoter (1.6 kb) and coding sequence for snapping turtle FoxL2 (tFoxL2) in frame with mCherry to produce a fluorescent reporter. The tFoxL2-mCherry fusion plasmid or mCherry control plasmid were stably transfected into mouse KK1 granulosa cells. These cells were then treated with 0, 1, 10, or 100 nM DHT to assess androgen effects on tFoxL2-mCherry expression. In contrast to the main hypothesis, DHT did not alter expression of the tFoxL2-mCherry reporter. However, normal serum increased expression of tFoxL2-mCherry when compared to charcoal-stripped serum, indicating that the cloned region of tFoxL2 contains cis regulatory elements. We also used the tFoxL2-mCherry plasmid as an expression vector to test the hypothesis that DHT and tFoxL2 interact to regulate expression of endogenous genes in granulosa cells. While tFoxL2-mCherry and DHT had independent effects on mouse FoxL2, FshR, GnRHR, and StAR expression, tFoxL2-mCherry potentiated low concentration DHT effects on mouse aromatase expression. Further studies will be required to determine whether synergistic regulation of aromatase by DHT and FoxL2 also occurs in turtle gonads during the sex-determining period, which would explain the feminizing effect of DHT in this species.
KW - Aromatase
KW - DHT
KW - FoxL2
KW - Ovary
KW - StAR
KW - Steroid
KW - TSD
UR - http://www.scopus.com/inward/record.url?scp=85024389770&partnerID=8YFLogxK
U2 - 10.1016/j.cbpa.2017.07.003
DO - 10.1016/j.cbpa.2017.07.003
M3 - Article
C2 - 28711355
AN - SCOPUS:85024389770
SN - 1095-6433
VL - 212
SP - 45
EP - 55
JO - Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology
JF - Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology
ER -