TY - JOUR
T1 - Characterization of nucleotide pools as a function of physiological state in Escherichia coli
AU - Buckstein, Michael H.
AU - He, Jian
AU - Rubin, Harvey
PY - 2008/1
Y1 - 2008/1
N2 - Using a modified method that involves minimal manipulation of cells, we report new information about nucleotide pool sizes and changes throughout the Escherichia coli growth curve. Nucleotide pool sizes are critically dependent on sample manipulation and extraction methods. Centrifugation and even short (2 min) lapses in sample preparation can dramatically affect results. The measured ATP concentration at three different growth rates is at least 3 mM, well above the 0.8 mM needed to saturate the rRNA promoter P1 in vitro. Many of the pools, including ATP, GTP, and UTP, begin to decrease while the cells are still in mid-log growth. After an almost universal drop in nucleotide concentration as the cells transition from logarithmic to stationary phase, there is a "rebound" of certain nucleotides, most notably ATP, after the cells enter stationary phase, followed by a progressive decrease. UTP, in contrast, increases as the cells transition into stationary phase. The higher UTP values might be related to elevated UDP-glucose/galactose, which was found to be at higher concentrations than expected in stationary phase. dTTP is the most abundant deoxynucleoside triphosphate (dNTP) in the cell despite the fact that its precursors, UDP and UTP, are not. All dNTPs decrease through the growth curve but do not have the abrupt drop, as seen with other nucleotides when the cells transition into stationary phase.
AB - Using a modified method that involves minimal manipulation of cells, we report new information about nucleotide pool sizes and changes throughout the Escherichia coli growth curve. Nucleotide pool sizes are critically dependent on sample manipulation and extraction methods. Centrifugation and even short (2 min) lapses in sample preparation can dramatically affect results. The measured ATP concentration at three different growth rates is at least 3 mM, well above the 0.8 mM needed to saturate the rRNA promoter P1 in vitro. Many of the pools, including ATP, GTP, and UTP, begin to decrease while the cells are still in mid-log growth. After an almost universal drop in nucleotide concentration as the cells transition from logarithmic to stationary phase, there is a "rebound" of certain nucleotides, most notably ATP, after the cells enter stationary phase, followed by a progressive decrease. UTP, in contrast, increases as the cells transition into stationary phase. The higher UTP values might be related to elevated UDP-glucose/galactose, which was found to be at higher concentrations than expected in stationary phase. dTTP is the most abundant deoxynucleoside triphosphate (dNTP) in the cell despite the fact that its precursors, UDP and UTP, are not. All dNTPs decrease through the growth curve but do not have the abrupt drop, as seen with other nucleotides when the cells transition into stationary phase.
UR - http://www.scopus.com/inward/record.url?scp=38749142232&partnerID=8YFLogxK
U2 - 10.1128/JB.01020-07
DO - 10.1128/JB.01020-07
M3 - Article
C2 - 17965154
AN - SCOPUS:38749142232
SN - 0021-9193
VL - 190
SP - 718
EP - 726
JO - Journal of Bacteriology
JF - Journal of Bacteriology
IS - 2
ER -