TY - JOUR
T1 - Celebration of a century of insulin therapy in children with type 1 diabetes
AU - Rogol, Alan D.
AU - Laffel, Lori M.
AU - Bode, Bruce
AU - Sperling, Mark A.
N1 - Publisher Copyright:
©
PY - 2022/6/20
Y1 - 2022/6/20
N2 - Insulin is the key anabolic hormone of metabolism, with clear effects on glycaemia. Near-complete insulin deficiency occurs in type 1 diabetes (T1D), the predominant form affecting children, and uniformly fatal until the discovery of insulin. By the early 20th century, it was known that T1D was caused by the lack of a factor from pancreatic islets, but isolation of this substance proved elusive. In 1921, an unusual team in Toronto comprising a surgeon, a medical student, a physiologist and a biochemist successfully isolated a glucose-lowering pancreatic endocrine secretion. They treated an emaciated 14-year-old boy in 1922, restoring his health and allowing him to live for another 13 years. Thus began an era of remarkable progress and partnership between academia and the pharmaceutical industry to produce drugs that benefit sick people. The Toronto team received the 1923 Nobel Prize, and more Nobel Prizes for work with insulin followed: for elucidation of its amino acid sequence and crystalline structure, and for its role in the development of radioimmunoassays to measure circulating hormone concentrations. Human insulin was the first hormone synthesised by recombinant methods, permitting modifications to enable improved absorption rates and alterations in duration of action. Coupled with delivery via insulin pens, programmable pumps and continuous glucose monitors, metabolic control and quality of life vastly improved and T1D in children was converted from uniformly fatal to a manageable chronic condition. We describe this remarkable ongoing story as insulin remains a paradigm for human ingenuity to heal nature's maladies.
AB - Insulin is the key anabolic hormone of metabolism, with clear effects on glycaemia. Near-complete insulin deficiency occurs in type 1 diabetes (T1D), the predominant form affecting children, and uniformly fatal until the discovery of insulin. By the early 20th century, it was known that T1D was caused by the lack of a factor from pancreatic islets, but isolation of this substance proved elusive. In 1921, an unusual team in Toronto comprising a surgeon, a medical student, a physiologist and a biochemist successfully isolated a glucose-lowering pancreatic endocrine secretion. They treated an emaciated 14-year-old boy in 1922, restoring his health and allowing him to live for another 13 years. Thus began an era of remarkable progress and partnership between academia and the pharmaceutical industry to produce drugs that benefit sick people. The Toronto team received the 1923 Nobel Prize, and more Nobel Prizes for work with insulin followed: for elucidation of its amino acid sequence and crystalline structure, and for its role in the development of radioimmunoassays to measure circulating hormone concentrations. Human insulin was the first hormone synthesised by recombinant methods, permitting modifications to enable improved absorption rates and alterations in duration of action. Coupled with delivery via insulin pens, programmable pumps and continuous glucose monitors, metabolic control and quality of life vastly improved and T1D in children was converted from uniformly fatal to a manageable chronic condition. We describe this remarkable ongoing story as insulin remains a paradigm for human ingenuity to heal nature's maladies.
KW - endocrinology
KW - paediatrics
KW - technology
UR - http://www.scopus.com/inward/record.url?scp=85134764058&partnerID=8YFLogxK
U2 - 10.1136/archdischild-2022-323975
DO - 10.1136/archdischild-2022-323975
M3 - Review article
C2 - 35725290
AN - SCOPUS:85134764058
SN - 0003-9888
VL - 108
SP - 3
EP - 10
JO - Archives of Disease in Childhood
JF - Archives of Disease in Childhood
IS - 1
ER -