Abstract
The Alzheimer's disease-associated β-amyloid peptide is produced through cleavage of amyloid precursor protein by β-secretase and γ-secretase. γ-Secretase is a complex containing presenilin (PS) as the catalytic component and three essential cofactors: Nicastrin, anterior pharynx defective (APH-1) and presenilin enhancer-2 (PEN-2). PS and signal peptide peptidase (SPP) define a novel family of aspartyl proteases that cleave substrates within the transmembrane domain presumptively using two membrane-embedded aspartic acid residues for catalysis. Apart from the two aspartate-containing active site motifs, the only other region that is conserved between PS and SPP is a PAL sequence at the C-terminus. Although it has been well documented that this motif is essential for γ-secretase activity, the mechanism underlying such a critical role is not understood. Here we show that mutations in this motif affect the conformation of the active site of γ-secretase resulting in a complete loss of PS binding to a γ-secretase transition state analog inhibitor, Merck C. Analogous mutations in SPP significantly inhibit its enzymatic activity. Furthermore, these mutations also abolish SPP binding to Merck C, indicating that SPP and γ-secretase share a similar active site conformation, which is dependent on the PAL motif. Exploring the amino acid requirements within this motif reveals a very small side chain requirement, which is conserved during evolution. Together, these observations strongly support the hypothesis that the PAL motif contributes to the active site conformation of γ-secretase and of SPP.
Original language | English |
---|---|
Pages (from-to) | 218-227 |
Number of pages | 10 |
Journal | Journal of Neurochemistry |
Volume | 96 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2006 |
Externally published | Yes |
Keywords
- Alzheimer's disease
- Intramembrane-cleaving aspartyl proteases
- Presenilin
- Signal peptide peptidase
- β-amyloid
- γ-secretase