TY - JOUR
T1 - C-jun NH2-terminal kinases target the ubiquitination of their associated transcription factors
AU - Fuchs, Serge Y.
AU - Xie, Bin
AU - Adler, Victor
AU - Fried, Victor A.
AU - Davis, Roger J.
AU - Ronai, Ze'ev
PY - 1997/12/19
Y1 - 1997/12/19
N2 - Regulatory proteins are often ubiquitinated, depending on their phosphorylation status as well as on their association with ancillary proteins that serve as adapters of the ubiquitination machinery. We previously demonstrated that c-Jun is targeted for ubiquitination by its association with inactive c-Jun NH2-terminal kinase (JNK). Phosphorylation by activated JNK protects c-Jun from ubiquitination, thus by prolonging its half-life. In the study reported here, we determined the ability of JNK to target ubiquitination of its other substrates (Elk1 and activating transcription factor 2 (ATF2)) and associated proteins (ATF2 and JunB). We demonstrate that phosphorylation by JNK protects ATF2, but not Elk1, from JNK-targeted ubiquitination. We also show that association of inactive JNK with JunB or ATF2 is necessary to target them for ubiquitination. Unlike its targeting of c-Jun, JNK requires additional cellular components, yet to be identified, to target the ubiquitination of ATF2. Elk1 is phosphorylated by JNK, but, JNK neither associates with nor targets Elk1 for ubiquitination. The implications for the dual role of JNK in the regulation of ubiquitination and stability of c-Jun, ATF2, and JunB in normally growing versus stressed cells are discussed.
AB - Regulatory proteins are often ubiquitinated, depending on their phosphorylation status as well as on their association with ancillary proteins that serve as adapters of the ubiquitination machinery. We previously demonstrated that c-Jun is targeted for ubiquitination by its association with inactive c-Jun NH2-terminal kinase (JNK). Phosphorylation by activated JNK protects c-Jun from ubiquitination, thus by prolonging its half-life. In the study reported here, we determined the ability of JNK to target ubiquitination of its other substrates (Elk1 and activating transcription factor 2 (ATF2)) and associated proteins (ATF2 and JunB). We demonstrate that phosphorylation by JNK protects ATF2, but not Elk1, from JNK-targeted ubiquitination. We also show that association of inactive JNK with JunB or ATF2 is necessary to target them for ubiquitination. Unlike its targeting of c-Jun, JNK requires additional cellular components, yet to be identified, to target the ubiquitination of ATF2. Elk1 is phosphorylated by JNK, but, JNK neither associates with nor targets Elk1 for ubiquitination. The implications for the dual role of JNK in the regulation of ubiquitination and stability of c-Jun, ATF2, and JunB in normally growing versus stressed cells are discussed.
UR - http://www.scopus.com/inward/record.url?scp=0031283180&partnerID=8YFLogxK
U2 - 10.1074/jbc.272.51.32163
DO - 10.1074/jbc.272.51.32163
M3 - Article
C2 - 9405416
AN - SCOPUS:0031283180
SN - 0021-9258
VL - 272
SP - 32163
EP - 32168
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 51
ER -