Brain aging is faithfully modelled in organotypic brain slices and accelerated by prions

Yingjun Liu, Assunta Senatore, Silvia Sorce, Mario Nuvolone, Jingjing Guo, Zeynep H. Gümüş, Adriano Aguzzi

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Mammalian models are essential for brain aging research. However, the long lifespan and poor amenability to genetic and pharmacological perturbations have hindered the use of mammals for dissecting aging-regulatory molecular networks and discovering new anti-aging interventions. To circumvent these limitations, we developed an ex vivo model system that faithfully mimics the aging process of the mammalian brain using cultured mouse brain slices. Genome-wide gene expression analyses showed that cultured brain slices spontaneously upregulated senescence-associated genes over time and reproduced many of the transcriptional characteristics of aged brains. Treatment with rapamycin, a classical anti-aging compound, largely abolished the time-dependent transcriptional changes in naturally aged brain slice cultures. Using this model system, we discovered that prions drastically accelerated the development of age-related molecular signatures and the pace of brain aging. We confirmed this finding in mouse models and human victims of Creutzfeldt-Jakob disease. These data establish an innovative, eminently tractable mammalian model of brain aging, and uncover a surprising acceleration of brain aging in prion diseases.

Original languageEnglish
Article number557
JournalCommunications Biology
Volume5
Issue number1
DOIs
StatePublished - Dec 2022

Fingerprint

Dive into the research topics of 'Brain aging is faithfully modelled in organotypic brain slices and accelerated by prions'. Together they form a unique fingerprint.

Cite this