TY - JOUR
T1 - Bone Morphogenetic Protein Expression in Newborn Rat Kidneys after Prenatal Exposure to Radiofrequency Radiation
AU - Pyrpasopoulou, Athina
AU - Kotoula, Vassiliki
AU - Cheva, Angeliki
AU - Hytiroglou, Prodromos
AU - Nikolakaki, Eleni
AU - Magras, Ioannis N.
AU - Xenos, Thomas D.
AU - Tsiboukis, Theodoros D.
AU - Karkavelas, Georgios
PY - 2004/4
Y1 - 2004/4
N2 - Effects of nonthermal radiofrequency radiation (RFR) of the global system of mobile communication (GSM) cellular phones have been as yet mostly studied at the molecular level in the context of cellular stress and proliferation, as well as neurotransmitter production and localization. In this study, a simulation model was designed for the exposure of pregnant rats to pulsed GSM-like RFR (9.4 GHz), based on the different resonant frequencies of man and rat. The power density applied was 5 μW/cm2, in order to avoid thermal electromagnetic effects as much as possible. Pregnant rats were exposed to RFR during days 1-3 postcoitum (p.c.) (embryogenesis, pre-implantation) and days 4-7 p.c. (early organogenesis, peri-implantation). Relative expression and localization of bone morphogenetic proteins (BMP) and their receptors (BMPR), members of a molecular family currently considered as major endocrine and autocrine morphogens and known to be involved in renal development, were investigated in newborn kidneys from RFR exposed and sham irradiated (control) rats. Semiquantitative duplex RT-PCR for BMP-4, -7, BMPR-IA, -IB, and -II showed increased BMP-4 and BMPR-IA, and decreased BMPR-II relative expression in newborn kidneys. These changes were statistically significant for BMP-4, BMPR-IA, and -II after exposure on days 1-3 p.c. (P < .001 each), and for BMP-4 and BMPR-IA after exposure on days 4-7 p.c. (P < .001 and P = .005, respectively). Immunohistochemistry and in situ hybridization (ISH) showed aberrant expression and localization of these molecules at the histological level. Our findings suggest that GSM-like RFR interferes with gene expression during early gestation and results in aberrations of BMP expression in the newborn. These molecular changes do not appear to affect renal organogenesis and may reflect a delay in the development of this organ. The differences of relative BMP expression after different time periods of exposure indicate the importance of timing for GSM-like RFR effects on embryonic development.
AB - Effects of nonthermal radiofrequency radiation (RFR) of the global system of mobile communication (GSM) cellular phones have been as yet mostly studied at the molecular level in the context of cellular stress and proliferation, as well as neurotransmitter production and localization. In this study, a simulation model was designed for the exposure of pregnant rats to pulsed GSM-like RFR (9.4 GHz), based on the different resonant frequencies of man and rat. The power density applied was 5 μW/cm2, in order to avoid thermal electromagnetic effects as much as possible. Pregnant rats were exposed to RFR during days 1-3 postcoitum (p.c.) (embryogenesis, pre-implantation) and days 4-7 p.c. (early organogenesis, peri-implantation). Relative expression and localization of bone morphogenetic proteins (BMP) and their receptors (BMPR), members of a molecular family currently considered as major endocrine and autocrine morphogens and known to be involved in renal development, were investigated in newborn kidneys from RFR exposed and sham irradiated (control) rats. Semiquantitative duplex RT-PCR for BMP-4, -7, BMPR-IA, -IB, and -II showed increased BMP-4 and BMPR-IA, and decreased BMPR-II relative expression in newborn kidneys. These changes were statistically significant for BMP-4, BMPR-IA, and -II after exposure on days 1-3 p.c. (P < .001 each), and for BMP-4 and BMPR-IA after exposure on days 4-7 p.c. (P < .001 and P = .005, respectively). Immunohistochemistry and in situ hybridization (ISH) showed aberrant expression and localization of these molecules at the histological level. Our findings suggest that GSM-like RFR interferes with gene expression during early gestation and results in aberrations of BMP expression in the newborn. These molecular changes do not appear to affect renal organogenesis and may reflect a delay in the development of this organ. The differences of relative BMP expression after different time periods of exposure indicate the importance of timing for GSM-like RFR effects on embryonic development.
KW - BMP
KW - GSM
KW - Molecular effect
KW - Nonthermal effects
KW - RFR
KW - Relative expression
UR - http://www.scopus.com/inward/record.url?scp=1942486707&partnerID=8YFLogxK
U2 - 10.1002/bem.10185
DO - 10.1002/bem.10185
M3 - Article
C2 - 15042631
AN - SCOPUS:1942486707
SN - 0197-8462
VL - 25
SP - 216
EP - 227
JO - Bioelectromagnetics
JF - Bioelectromagnetics
IS - 3
ER -