Abstract
Recently, pharmacological chaperone therapy for Pompe disease with small molecules such as imino sugars has attracted interest. But mutant acid α-glucosidase (GAA) species responsive to imino sugars are limited. To elucidate the characteristics of a mutant GAA responsive to imino sugars, we performed biochemical and structural analyses. Among cultured fibroblast cell lines derived from Japanese Pompe patients, only one carrying p.S529V/p.S619R amino acid substitutions responded to 1-deoxynojirimycin (DNJ), and an expression study revealed that DNJ, N-butyl-deoxynojirimycin and nojirimycin-1-sulfonic acid increased the enzyme activity of the S529V mutant GAA expressed in Chinese hamster ovary cells. The results of western blotting analysis suggested that these imino sugars facilitated the intracellular transportation of the mutant GAA and stabilized it. Among these imino sugars, DNJ exhibited the strongest action on the mutant GAA. Structural analysis revealed that DNJ almost completely occupied the active site pocket, and interacted with amino acid residues comprising it through van der Waals contacts and hydrogen bonds. This information will be useful for improvement of pharmacological chaperone therapy for Pompe disease.
Original language | English |
---|---|
Pages (from-to) | 440-446 |
Number of pages | 7 |
Journal | Journal of Human Genetics |
Volume | 56 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2011 |
Externally published | Yes |
Keywords
- Acid α-glucosidase
- Pompe disease
- imino sugar
- pharmacological chaperone
- structure