Abstract

As personalized medicine becomes more integrated into healthcare, the rate at which human genomes are being sequenced is rising quickly together with a concomitant acceleration in compute and storage requirements. To achieve the most effective solution for genomic workloads without re-architecting the industry-standard software, we performed a rigorous analysis of usage statistics, benchmarks and available technologies to design a system for maximum throughput. We share our experiences designing a system optimized for the "Genome Analysis ToolKit (GATK) Best Practices" whole genome DNA and RNA pipeline based on an evaluation of compute, workload and I/O characteristics. The characteristics of genomic-based workloads are vastly different from those of traditional HPC workloads, requiring different configurations of the scheduler and the I/O subsystem to achieve reliability, performance and scalability. By understanding how our researchers and clinicians work, we were able to employ techniques not only to speed up their workflow yielding improved and repeatable performance, but also to make more efficient use of storage and compute resources.

Original languageEnglish
Title of host publicationProceedings of SC 2015
Subtitle of host publicationThe International Conference for High Performance Computing, Networking, Storage and Analysis
PublisherIEEE Computer Society
ISBN (Electronic)9781450337236
DOIs
StatePublished - 15 Nov 2015
EventInternational Conference for High Performance Computing, Networking, Storage and Analysis, SC 2015 - Austin, United States
Duration: 15 Nov 201520 Nov 2015

Publication series

NameInternational Conference for High Performance Computing, Networking, Storage and Analysis, SC
Volume15-20-November-2015
ISSN (Print)2167-4329
ISSN (Electronic)2167-4337

Conference

ConferenceInternational Conference for High Performance Computing, Networking, Storage and Analysis, SC 2015
Country/TerritoryUnited States
CityAustin
Period15/11/1520/11/15

Keywords

  • GPFS
  • LSF
  • benchmarking
  • flash memory
  • genomic sequencing
  • high performance
  • high throughput and data-intensive computing
  • parallel file systems
  • performance analysis
  • scheduling and resource management

Fingerprint

Dive into the research topics of 'Big omics data experience'. Together they form a unique fingerprint.

Cite this