TY - JOUR
T1 - Bcl-2-dependent oxidation of pyruvate dehydrogenase-E2, a primary biliary cirrhosis autoantigen, during apoptosis
AU - Odin, Joseph A.
AU - Huebert, Robert C.
AU - Casciola-Rosen, Livia
AU - LaRusso, Nicholas F.
AU - Rosen, Antony
PY - 2001
Y1 - 2001
N2 - The close association between autoantibodies against pyruvate dehydrogenase-E2 (PDC-E2), a ubiquitous mitochondrial protein, and primary biliary cirrhosis (PBC) is unexplained. Many autoantigens are selectively modified during apoptosis, which has focused attention on apoptotic cells as a potential source of"neo-antigens" responsible for activating autoreactive lymphocytes. Since increased apoptosis of bile duct epithelial cells (cholangiocytes) is evident in patients with PBC, we evaluated the effect of apoptosis on PDC-E2. Autoantibody recognition of PDC-E2 by immunofluorescence persisted in apoptotic cholangiocytes and appeared unchanged by immunoblot analysis. PDC-E2 was neither cleaved by caspases nor concentrated into surface blebs in apoptotic cells. In other cell types, autoantibody recognition of PDC-E2, as assessed by immunofluorescence, was abrogated after apoptosis, although expression levels of PDC-E2 appeared unchanged when examined by immunoblot analysis. Both overexpression of Bcl-2 and depletion of glutathione before inducing apoptosis prevented this loss of autoantibody recognition, suggesting that glutathiolation, rather than degradation or loss, of PDC-E2 was responsible for the loss of immunofluorescence signal. We postulate that apoptotic cholangiocytes, unlike other apoptotic cell types, are a potential source of immunogenic PDC-E2 in patients with PBC.
AB - The close association between autoantibodies against pyruvate dehydrogenase-E2 (PDC-E2), a ubiquitous mitochondrial protein, and primary biliary cirrhosis (PBC) is unexplained. Many autoantigens are selectively modified during apoptosis, which has focused attention on apoptotic cells as a potential source of"neo-antigens" responsible for activating autoreactive lymphocytes. Since increased apoptosis of bile duct epithelial cells (cholangiocytes) is evident in patients with PBC, we evaluated the effect of apoptosis on PDC-E2. Autoantibody recognition of PDC-E2 by immunofluorescence persisted in apoptotic cholangiocytes and appeared unchanged by immunoblot analysis. PDC-E2 was neither cleaved by caspases nor concentrated into surface blebs in apoptotic cells. In other cell types, autoantibody recognition of PDC-E2, as assessed by immunofluorescence, was abrogated after apoptosis, although expression levels of PDC-E2 appeared unchanged when examined by immunoblot analysis. Both overexpression of Bcl-2 and depletion of glutathione before inducing apoptosis prevented this loss of autoantibody recognition, suggesting that glutathiolation, rather than degradation or loss, of PDC-E2 was responsible for the loss of immunofluorescence signal. We postulate that apoptotic cholangiocytes, unlike other apoptotic cell types, are a potential source of immunogenic PDC-E2 in patients with PBC.
UR - http://www.scopus.com/inward/record.url?scp=0034953329&partnerID=8YFLogxK
U2 - 10.1172/JCI200110716
DO - 10.1172/JCI200110716
M3 - Article
C2 - 11457875
AN - SCOPUS:0034953329
SN - 0021-9738
VL - 108
SP - 223
EP - 232
JO - Journal of Clinical Investigation
JF - Journal of Clinical Investigation
IS - 2
ER -