TY - JOUR
T1 - Barren Plateaus Preclude Learning Scramblers
AU - Holmes, Zoë
AU - Arrasmith, Andrew
AU - Yan, Bin
AU - Coles, Patrick J.
AU - Albrecht, Andreas
AU - Sornborger, Andrew T.
N1 - Publisher Copyright:
© 2021 American Physical Society.
PY - 2021/5/12
Y1 - 2021/5/12
N2 - Scrambling processes, which rapidly spread entanglement through many-body quantum systems, are difficult to investigate using standard techniques, but are relevant to quantum chaos and thermalization. In this Letter, we ask if quantum machine learning (QML) could be used to investigate such processes. We prove a no-go theorem for learning an unknown scrambling process with QML, showing that it is highly probable for any variational Ansatz to have a barren plateau landscape, i.e., cost gradients that vanish exponentially in the system size. This implies that the required resources scale exponentially even when strategies to avoid such scaling (e.g., from Ansatz-based barren plateaus or no-free-lunch theorems) are employed. Furthermore, we numerically and analytically extend our results to approximate scramblers. Hence, our work places generic limits on the learnability of unitaries when lacking prior information.
AB - Scrambling processes, which rapidly spread entanglement through many-body quantum systems, are difficult to investigate using standard techniques, but are relevant to quantum chaos and thermalization. In this Letter, we ask if quantum machine learning (QML) could be used to investigate such processes. We prove a no-go theorem for learning an unknown scrambling process with QML, showing that it is highly probable for any variational Ansatz to have a barren plateau landscape, i.e., cost gradients that vanish exponentially in the system size. This implies that the required resources scale exponentially even when strategies to avoid such scaling (e.g., from Ansatz-based barren plateaus or no-free-lunch theorems) are employed. Furthermore, we numerically and analytically extend our results to approximate scramblers. Hence, our work places generic limits on the learnability of unitaries when lacking prior information.
UR - http://www.scopus.com/inward/record.url?scp=85106358299&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.126.190501
DO - 10.1103/PhysRevLett.126.190501
M3 - Article
C2 - 34047576
AN - SCOPUS:85106358299
SN - 0031-9007
VL - 126
JO - Physical Review Letters
JF - Physical Review Letters
IS - 19
M1 - 190501
ER -