Avoidable errors in deposited macromolecular structures: An impediment to efficient data mining

Zbigniew Dauter, Alexander Wlodawer, Wladek Minor, Mariusz Jaskolski, Bernhard Rupp

Research output: Contribution to journalArticlepeer-review

50 Scopus citations

Abstract

Whereas the vast majority of the more than 85000 crystal structures of macromolecules currently deposited in the Protein Data Bank are of high quality, some suffer from a variety of imperfections. Although this fact has been pointed out in the past, it is still worth periodic updates so that the metadata obtained by global analysis of the available crystal structures, as well as the utilization of the individual structures for tasks such as drug design, should be based on only the most reliable data. Here, selected abnormal deposited structures have been analysed based on the Bayesian reasoning that the correctness of a model must be judged against both the primary evidence as well as prior knowledge. These structures, as well as information gained from the corresponding publications (if available), have emphasized some of the most prevalent types of common problems. The errors are often perfect illustrations of the nature of human cognition, which is frequently influenced by preconceptions that may lead to fanciful results in the absence of proper validation. Common errors can be traced to negligence and a lack of rigorous verification of the models against electron density, creation of non-parsimonious models, generation of improbable numbers, application of incorrect symmetry, illogical presentation of the results, or violation of the rules of chemistry and physics. Paying more attention to such problems, not only in the final validation stages but during the structure-determination process as well, is necessary not only in order to maintain the highest possible quality of the structural repositories and databases but most of all to provide a solid basis for subsequent studies, including large-scale data-mining projects. For many scientists PDB deposition is a rather infrequent event, so the need for proper training and supervision is emphasized, as well as the need for constant alertness of reason and critical judgment as absolutely necessary safeguarding measures against such problems. Ways of identifying more problematic structures are suggested so that their users may be properly alerted to their possible shortcomings.

Original languageEnglish
Pages (from-to)179-193
Number of pages15
JournalIUCrJ
Volume1
DOIs
StatePublished - 30 Apr 2014
Externally publishedYes

Keywords

  • Protein Data Bank
  • macromolecular crystallography
  • model validation

Fingerprint

Dive into the research topics of 'Avoidable errors in deposited macromolecular structures: An impediment to efficient data mining'. Together they form a unique fingerprint.

Cite this