TY - JOUR
T1 - Autosomal Dominant Alzheimer’s Disease Mutations in Human Microglia Are Not Sufficient to Trigger Amyloid Pathology in WT Mice but Might Affect Pathology in 5XFAD Mice
AU - Dominantly Inherited Alzheimer Network
AU - Romero-Molina, Carmen
AU - Neuner, Sarah M.
AU - Ryszawiec, Marcelina
AU - Pébay, Alice
AU - Marcora, Edoardo
AU - Goate, Alison
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/3
Y1 - 2024/3
N2 - Several genetic variants that affect microglia function have been identified as risk factors for Alzheimer’s Disease (AD), supporting the importance of this cell type in disease progression. However, the effect of autosomal dominant mutations in the amyloid precursor protein (APP) or the presenilin (PSEN1/2) genes has not been addressed in microglia in vivo. We xenotransplanted human microglia derived from non-carriers and carriers of autosomal dominant AD (ADAD)-causing mutations in the brain of hCSF1 WT or 5XFAD mice. We observed that ADAD mutations in microglia are not sufficient to trigger amyloid pathology in WT mice. In 5XFAD mice, we observed a non-statistically significant increase in amyloid plaque volume and number of dystrophic neurites, coupled with a reduction in plaque-associated microglia in the brain of mice xenotransplanted with ADAD human microglia compared to mice xenotransplanted with non-ADAD microglia. In addition, we observed a non-statistically significant impairment in working and contextual memory in 5XFAD mice xenotransplanted with ADAD microglia compared to those xenotransplanted with non-ADAD-carrier microglia. We conclude that, although not sufficient to initiate amyloid pathology in the healthy brain, mutations in APP and PSEN1 in human microglia might cause mild changes in pathological and cognitive outcomes in 5XFAD mice in a manner consistent with increased AD risk.
AB - Several genetic variants that affect microglia function have been identified as risk factors for Alzheimer’s Disease (AD), supporting the importance of this cell type in disease progression. However, the effect of autosomal dominant mutations in the amyloid precursor protein (APP) or the presenilin (PSEN1/2) genes has not been addressed in microglia in vivo. We xenotransplanted human microglia derived from non-carriers and carriers of autosomal dominant AD (ADAD)-causing mutations in the brain of hCSF1 WT or 5XFAD mice. We observed that ADAD mutations in microglia are not sufficient to trigger amyloid pathology in WT mice. In 5XFAD mice, we observed a non-statistically significant increase in amyloid plaque volume and number of dystrophic neurites, coupled with a reduction in plaque-associated microglia in the brain of mice xenotransplanted with ADAD human microglia compared to mice xenotransplanted with non-ADAD microglia. In addition, we observed a non-statistically significant impairment in working and contextual memory in 5XFAD mice xenotransplanted with ADAD microglia compared to those xenotransplanted with non-ADAD-carrier microglia. We conclude that, although not sufficient to initiate amyloid pathology in the healthy brain, mutations in APP and PSEN1 in human microglia might cause mild changes in pathological and cognitive outcomes in 5XFAD mice in a manner consistent with increased AD risk.
KW - Alzheimer’s disease
KW - amyloid
KW - microglia
UR - http://www.scopus.com/inward/record.url?scp=85187781640&partnerID=8YFLogxK
U2 - 10.3390/ijms25052565
DO - 10.3390/ijms25052565
M3 - Article
C2 - 38473822
AN - SCOPUS:85187781640
SN - 1661-6596
VL - 25
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 5
M1 - 2565
ER -