Autophagy and mitochondrial dysfunction in tenon fibroblasts from exfoliation glaucoma patients

Andrew Want, Stephanie R. Gillespie, Zheng Wang, Ronald Gordon, Carlo Iomini, Robert Ritch, J. Mario Wolosin, Audrey M. Bernstein

Research output: Contribution to journalArticlepeer-review

42 Scopus citations

Abstract

Purpose: To test the hypothesis that autophagy dysfunction is involved in exfoliation syndrome (XFS), a systemic disorder of extracellular elastic matrices that causes a distinct form of human glaucoma. Methods: Fibroblasts derived from tenon tissue discards (TFs) from filtration surgery to relieve intraocular pressure in XFS patients were compared against age-matched TFs derived from surgery in primary open-angle glaucoma (POAG) patients or from strabismus surgery. Differential interference contrast light, and electron microscopy were used to examine structural cell features. Immunocytochemistry was used to visualize LOXL1 and Fibulin-5, lysosomes, endosomes, Golgi, and microtubules. Light scatter, Cyto-ID™ and JC1 flow cytometry were used to measure relative cell size, autophagic flux rate and mitochondrial membrane potential (MMPT), respectively. Enhanced autophagy was induced by serum withdrawal. Results: In culture, XFS-TFs were 1.38-fold larger (by light scatter ratio, p = 0.05), proliferated 42% slower (p = 0.026), and were morphologically distinct in 2D and 3D culture compared to their POAG counterparts. In extended 3D cultures, XFS-TFs accumulated 8-10 times more Fibulin-5 than the POAG-TFs, and upon serum withdrawal, there were marked deficiencies in relocation of endosomes and lysosomes to the perinuclear area. Correspondingly, the XFS-TFs displayed significant accumulation of the autophagasome marker LC3 II (3.9 fold increase compared to POAG levels, p = 0.0001) and autophagic flux rate as measured by Cyto-ID dye was 53% lower in XFS-TFs than in POAG-TFs (p = 0.01), indicating reduced clearance of autophagasomes. Finally the percent of cells with diminished MMPT was 3-8 times larger in the XFS-TFs than in POAG-TFs (p = 0.02). Conclusions: Our results provide for the first time a link between XFS pathology to autophagy dysfunction, a major contributor tomultiple age related diseases systemically throughout the body, in the brain and in the retina. A diminished capacity for degradation of denatured protein and aging cellular organelles may underpin the development of extracellular protein aggregates in XFS.

Original languageEnglish
Article numbere0157404
JournalPLoS ONE
Volume11
Issue number7
DOIs
StatePublished - Jul 2016

Fingerprint

Dive into the research topics of 'Autophagy and mitochondrial dysfunction in tenon fibroblasts from exfoliation glaucoma patients'. Together they form a unique fingerprint.

Cite this