Autologous aldrithiol-2-inactivated HIV-1 combined with polyinosinic-polycytidylic acid-poly-l-lysine carboxymethylcellulose as a vaccine platform for therapeutic dendritic cell immunotherapy

Elizabeth Miller, Meredith Spadaccia, Rachel Sabado, Elena Chertova, Julian Bess, Charles Mac Trubey, Rose Marie Holman, Andres Salazar, Jeffrey Lifson, Nina Bhardwaj

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Therapeutic interventions for HIV-1 that successfully augment adaptive immunity to promote killing of infected cells may be a requisite component of strategies to reduce latent cellular reservoirs. Adoptive immunotherapies utilizing autologous monocyte-derived dendritic cells (DCs) that have been activated and antigen loaded ex vivo may serve to circumvent defects in DC function that are present during HIV infection in order to enhance adaptive immune responses. Here we detail the clinical preparation of DCs loaded with autologous aldrithiol-2 (AT-2)-inactivated HIV that have been potently activated with the viral mimic, Polyinosinic-polycytidylic acid-poly- l-lysine carboxymethylcellulose (Poly-ICLC). HIV is first propagated from CD4+ T cells from HIV-infected donors and then rendered non-replicative by chemical inactivation with aldrithiol-2 (AT-2), purified, and quantified. Viral inactivation is confirmed through measurement of Tat-regulated β-galactosidase reporter gene expression following infection of TZM-bl cells. In-process testing for sterility, mycoplasma, LPS, adventitious agents, and removal of AT-2 is performed on viral preparations. Autologous DCs are generated and pulsed with autologous AT-2-inactivated virus and simultaneously stimulated with Poly-ICLC to constitute the final DC vaccine product. Phenotypic identity, maturation, and induction of HIV-specific adaptive immune responses are confirmed via flow cytometric analysis of DCs and cocultured autologous CD4+ and CD8+ T cells. Lot release criteria for the DC vaccine have been defined in accordance with Good Manufacturing Practice (GMP) guidelines. The demonstrated feasibility of this approach has resulted in approval by the FDA for investigational use in antiretroviral (ART) suppressed individuals. We discuss how this optimized DC formulation may enhance the quality of anti-HIV adaptive responses beyond what has been previously observed during DC immunotherapy trials for HIV infection.

Original languageEnglish
Pages (from-to)388-395
Number of pages8
JournalVaccine
Volume33
Issue number2
DOIs
StatePublished - 3 Jan 2015

Keywords

  • Dendritic cell
  • HIV-1
  • Poly-ICLC
  • Therapeutic vaccine

Fingerprint

Dive into the research topics of 'Autologous aldrithiol-2-inactivated HIV-1 combined with polyinosinic-polycytidylic acid-poly-l-lysine carboxymethylcellulose as a vaccine platform for therapeutic dendritic cell immunotherapy'. Together they form a unique fingerprint.

Cite this