Abstract
Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-α2 alone (five patients) or with IFN-ω (eight patients) from a cohort of 279 patients (4.7%) aged 6–73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-α2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-ω. The patients’ autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients <70 yr of age (5.7 vs. 1.1%, P = 2.2 × 10−5), but not >70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-α2 and IFN-ω (OR = 11.7, P = 1.3 × 10−5), especially those <70 yr old (OR = 139.9, P = 3.1 × 10−10). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for ∼5% of cases of life-threatening influenza pneumonia in patients <70 yr old.
Original language | English |
---|---|
Article number | e20220514 |
Journal | Journal of Experimental Medicine |
Volume | 219 |
Issue number | 11 |
DOIs | |
State | Published - 7 Nov 2022 |
Access to Document
Fingerprint
Dive into the research topics of 'Autoantibodies against type I IFNs in patients with critical influenza pneumonia'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Autoantibodies against type I IFNs in patients with critical influenza pneumonia. / Zhang, Qian; Pizzorno, Andrés; Miorin, Lisa et al.
In: Journal of Experimental Medicine, Vol. 219, No. 11, e20220514, 07.11.2022.Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Autoantibodies against type I IFNs in patients with critical influenza pneumonia
AU - Zhang, Qian
AU - Pizzorno, Andrés
AU - Miorin, Lisa
AU - Bastard, Paul
AU - Gervais, Adrian
AU - Le Voyer, Tom
AU - Bizien, Lucy
AU - Manry, Jeremy
AU - Rosain, Jérémie
AU - Philippot, Quentin
AU - Goavec, Kelian
AU - Padey, Blandine
AU - Cupic, Anastasija
AU - Laurent, Emilie
AU - Saker, Kahina
AU - Vanker, Martti
AU - Särekannu, Karita
AU - García-Salum, Tamara
AU - Ferres, Marcela
AU - Corre, Nicole Le
AU - Sánchez-Céspedes, Javier
AU - Balsera-Manzanero, María
AU - Carratala, Jordi
AU - Retamar-Gentil, Pilar
AU - Abelenda-Alonso, Gabriela
AU - Valiente, Adoración
AU - Tiberghien, Pierre
AU - Zins, Marie
AU - Debette, Stéphanie
AU - Meyts, Isabelle
AU - Haerynck, Filomeen
AU - Castagnoli, Riccardo
AU - Notarangelo, Luigi D.
AU - Gonzalez-Granado, Luis I.
AU - Dominguez-Pinilla, Nerea
AU - Andreakos, Evangelos
AU - Triantafyllia, Vasiliki
AU - Rodríguez-Gallego, Carlos
AU - Solé-Violán, Jordi
AU - Ruiz-Hernandez, José Juan
AU - de Castro, Felipe Rodríguez
AU - Ferreres, José
AU - Briones, Marisa
AU - Wauters, Joost
AU - Vanderbeke, Lore
AU - Feys, Simon
AU - Kuo, Chen Yen
AU - Lei, Wei Te
AU - Ku, Cheng Lung
AU - Tal, Galit
AU - Etzioni, Amos
AU - Hanna, Suhair
AU - Fournet, Thomas
AU - Casalegno, Jean Sebastien
AU - Queromes, Gregory
AU - Argaud, Laurent
AU - Javouhey, Etienne
AU - Rosa-Calatrava, Manuel
AU - Cordero, Elisa
AU - Aydillo, Teresa
AU - Medina, Rafael A.
AU - Kisand, Kai
AU - Puel, Anne
AU - Jouanguy, Emmanuelle
AU - Abel, Laurent
AU - Cobat, Aurélie
AU - Trouillet-Assant, Sophie
AU - García-Sastre, Adolfo
AU - Casanova, Jean Laurent
N1 - Funding Information: SINOVAC outside the submitted work. P. Retamar-Gentil reported personal fees from Merck outside the submitted work. I. Meyts reported grants from CSL-Behring outside the submitted work. E. Andreakos reported grants from Janssen Pharmaceuticals during the conduct of the study. J. Wauters reported grants and personal fees from Pfizer and Gilead outside the submitted work. L. Vanderbeke reported grants from Research Foundation Flanders and non-financial support from Pfizer outside the submitted work. S. Feys reported grants from Pfizer outside the submitted work. J. Casalegno reported “other” from Pfizer and grants from Sanofi outside the submitted work. M. Rosa-Calatrava reported a patent to WO2016/146836 licensed (Signia Therapeutics), a patent to WO2017/174593 licensed (Signia Therapeutics), and a patent to WO2019/224489 licensed (Signia Therapeutics); and is the co-founder of Signia Therapeutics SAS. S. Trouillet-Assant reported non-financial support from BioMérieux outside the submitted work. A. Garcia-Sastre reported “other” from Vivaldi Biosciences, Pagoda, Contrafect, Vaxalto, Accurius, Curelab oncology, and Curelab veterinary; personal fees from Avimex, 7Hills, Esperovax, Pfizer, Farmak, Applied Biological Laboratories, Paratus, Pharmamar, Pfizer, and Synairgen; grants from Pfizer, Pharmamar, Blade Therapeutics, Avimex, Accurius, Dyna-vax, Kenall Manufacturing, ImmunityBio, Nanocomposix, Merck, Model Medicines, Atea Pharma, Shenwa Biosciences, Johnson & Johnson, 7 Hills, Hexamer, N-fold LLC, and Applied Biological Laboratories outside the submitted work; in addition, A. Garcia-Sastre had a patent for influenza virus vaccines and uses thereof issued; and invited speaker in meeting events organized by Seqirus, Janssen, Abbott, and Astrazeneca. J. Casanova reported a patent to PCT/US2021/ 042741 pending. No other disclosures were reported. Funding Information: We thank Dr. Cato Jacobs for her contribution to the sampling of UZLeuven patients in Belgium. The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (NIH; R01AI088364 and R01AI163029), the National Center for Advancing Translational Sciences, NIH Clinical and Translational Science Award program (UL1 TR001866), the Fisher Center for Alzheimer’s Research Foundation, the Meyer Foundation, the JPB Foundation, the French National Research Agency (ANR) under the “Investments for the Future” program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), the French Foundation for Medical Research (EQU201903007798), the ANRS-COV05, ANR-RHU program ANR-21-RHUS-08, ANR GENVIR (ANR-20-CE93-003), ANR GenMISC (ANR-21-COVR-0039), and ANR AABIFNCOV (ANR-20-CO11-0001) projects, the European Union’s Horizon 2020 research and innovation program under grant agreement 824110 (EASI-genomics), the HORIZON-HLTH-2021-DISEASE-04 program under grant agreement 01057100 (UNDINE), the Square Foundation, Grandir–Fonds de solidarité pour l’enfance, the Fondation du Souffle, the SCOR Corporate Foundation for Sci-ence, the French Ministry of Higher Education, Research, and Innovation (MESRI-COVID-19), Institut National de la Santé et de la Recherche Médicale (INSERM), REACTing-INSERM, and the Université Paris Cité. This work was partly supported by the Center for Research on Influenza Pathogenesis and Transmis-sion, a National Institute of Allergy and Infectious Diseases (NIAID)–funded Center of Excellence for Influenza Research and Response (contract no. 75N93021C00014), and the FLUOMICS Consortium (NIH-NIAID grant U19AI135972) to both A. García-Sastre and R.A. Medina, and by NIAID grant U19AI142733 and U19AI168631 to A. García-Sastre. Work in the Medina laboratory was also supported by the PIA ACT 1408, FONDECYT 1161971 and 1212023 grants from Agencia Nacional de Investigación y De-sarrollo of Chile. The VirPath team is supported by INSERM REACTing (Research & Action Emerging Infectious Diseases), CNRS, and Mérieux Research grants. B. Padey is supported by an ANRT CIFRE PhD scholarship. For the Lyon cohort, specimen collection and study was supported by a grant from the French Ministry of Health PHRC-I 2013 ANTIGRIPPE. C. Rodríguez-Gallego and colleagues were supported by the Instituto de Salud Carlos III (COV20_01333, COV20_01334, and PI12/01565, Spanish Ministry for Science and Innovation RTC-2017-6471-1; AEI/ FEDER, UE), Grupo DISA, Fundación MAPFRE Guanarteme, Sociedad Española de Neumología y Cirugía Torácica and Cab-ildo Insular de Tenerife (CGIEU0000219140 and “Apuestas, científicas del Instituto Tecnológico y de Energías Renovables para colaborar en la lucha contra la COVID-19”). E. Andreakos is supported by the Hellenic Foundation for Research and Innovation (INTERFLU, no. 1574). P. Bastard was supported by the French Foundation for Medical Research (EA20170638020) and by the MD-PhD program of the Imagine Institute (with the support of the Fondation Bettencourt-Schueller). This study was supported by Plan Nacional de I+D+i 2013-2016 and In-stituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Ciencia, Innovación y Universidades, Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0009); cofinanced by European Regional Development Fund “A way to achieve Eu-rope”; Operative Program Intelligence Growth 2014-2020 (CB21/13/00006) also was supported by CIBER-Consorcio Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and Unión Europea–Next Generation EU and Consejería de Economía, Conocimiento, Empresas y Universidad, Secretaría General de Universidades, Investigación y Tecnología, Junta de Andalucía, Spain (P18-RT-3320). I. Meyts is a Senior Clinical Investigator at the Research Foundation–Flanders and is supported by the CSL Behring Chair of Primary Immunodeficiencies, a CSL-Behring Research Grant, KU Leuven C1 grant C16/18/007, a VIB GC PID Grant, Fonds Wetenschappelijk Onderzoek grants G0C8517N, G0B5120N, and G0E8420N, and the Jeffrey Modell Foundation. Open Access funding provided by Rockefeller University. Author contributions: Q. Zhang, A. Pizzorno, L. Miorin, P. Funding Information: The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (NIH; R01AI088364 and R01AI163029), the National Center for Advancing Translational Sciences, NIH Clinical and Translational Science Award program (UL1 TR001866), the Fisher Center for Alzheimer’s Research Foundation, the Meyer Foundation, the JPB Foundation, the French National Research Agency (ANR) under the “Investments for the Future” program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), the French Foundation for Medical Research (EQU201903007798), the ANRS-COV05, ANR-RHU program ANR-21-RHUS-08, ANR GENVIR (ANR-20-CE93-003), ANR GenMISC (ANR-21-COVR-0039), and ANR AABIFNCOV (ANR-20-CO11-0001) projects, the European Union’s Horizon 2020 research and innovation program under grant agreement 824110 (EASI-genomics), the HORIZON-HLTH-2021-DISEASE-04 program under grant agreement 01057100 (UNDINE), the Square Foundation, Grandir–Fonds de solidarité pour l’enfance, the Fondation du Souffle, the SCOR Corporate Foundation for Science, the French Ministry of Higher Education, Research, and Innovation (MESRI-COVID-19), Institut National de la Santé et de la Recherche Médicale (INSERM), REACTing-INSERM, and the Université Paris Cité. This work was partly supported by the Center for Research on Influenza Pathogenesis and Transmission, a National Institute of Allergy and Infectious Diseases (NIAID)–funded Center of Excellence for Influenza Research and Response (contract no. 75N93021C00014), and the FLUOMICS Consortium (NIH-NIAID grant U19AI135972) to both A. García-Sastre and R.A. Medina, and by NIAID grant U19AI142733 and U19AI168631 to A. García-Sastre. Work in the Medina laboratory was also supported by the PIA ACT 1408, FONDECYT 1161971 and 1212023 grants from Agencia Nacional de Investigación y De-sarrollo of Chile. The VirPath team is supported by INSERM REACTing (Research & Action Emerging Infectious Diseases), CNRS, and Mérieux Research grants. B. Padey is supported by an ANRT CIFRE PhD scholarship. For the Lyon cohort, specimen collection and study was supported by a grant from the French Ministry of Health PHRC-I 2013 ANTIGRIPPE. C. Rodríguez-Gallego and colleagues were supported by the Instituto de Salud Carlos III (COV20_01333, COV20_01334, and PI12/01565, Spanish Ministry for Science and Innovation RTC-2017-6471-1; AEI/ FEDER, UE), Grupo DISA, Fundación MAPFRE Guanarteme, Sociedad Española de Neumología y Cirugía Torácica and Cabildo Insular de Tenerife (CGIEU0000219140 and “Apuestas, científicas del Instituto Tecnológico y de Energías Renovables para colaborar en la lucha contra la COVID-19”). E. Andreakos is supported by the Hellenic Foundation for Research and Funding Information: Innovation (INTERFLU, no. 1574). P. Bastard was supported by the French Foundation for Medical Research (EA20170638020) and by the MD-PhD program of the Imagine Institute (with the support of the Fondation Bettencourt-Schueller). This study was supported by Plan Nacional de I+D+i 2013-2016 and In-stituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Ciencia, Innovación y Universidades, Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0009); cofinanced by European Regional Development Fund “A way to achieve Europe”; Operative Program Intelligence Growth 2014-2020 (CB21/13/00006) also was supported by CIBER-Consorcio Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and Unión Europea–Next Generation EU and Consejería de Economía, Conocimiento, Empresas y Universidad, Secretaría General de Universidades, Investigación y Tecnología, Junta de Andalucía, Spain (P18-RT-3320). I. Meyts is a Senior Clinical Investigator at the Research Foundation–Flanders and is supported by the CSL Behring Chair of Primary Immunodeficiencies, a CSL-Behring Research Grant, KU Leuven C1 grant C16/18/007, a VIB GC PID Grant, Fonds Wetenschappelijk Onderzoek grants G0C8517N, G0B5120N, and G0E8420N, and the Jeffrey Modell Foundation. Open Access funding provided by Rockefeller University. Publisher Copyright: © 2022 Zhang et al.
PY - 2022/11/7
Y1 - 2022/11/7
N2 - Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-α2 alone (five patients) or with IFN-ω (eight patients) from a cohort of 279 patients (4.7%) aged 6–73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-α2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-ω. The patients’ autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients <70 yr of age (5.7 vs. 1.1%, P = 2.2 × 10−5), but not >70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-α2 and IFN-ω (OR = 11.7, P = 1.3 × 10−5), especially those <70 yr old (OR = 139.9, P = 3.1 × 10−10). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for ∼5% of cases of life-threatening influenza pneumonia in patients <70 yr old.
AB - Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-α2 alone (five patients) or with IFN-ω (eight patients) from a cohort of 279 patients (4.7%) aged 6–73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-α2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-ω. The patients’ autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients <70 yr of age (5.7 vs. 1.1%, P = 2.2 × 10−5), but not >70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-α2 and IFN-ω (OR = 11.7, P = 1.3 × 10−5), especially those <70 yr old (OR = 139.9, P = 3.1 × 10−10). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for ∼5% of cases of life-threatening influenza pneumonia in patients <70 yr old.
UR - http://www.scopus.com/inward/record.url?scp=85136198376&partnerID=8YFLogxK
U2 - 10.1084/jem.20220514
DO - 10.1084/jem.20220514
M3 - Article
C2 - 36112363
AN - SCOPUS:85136198376
VL - 219
JO - Journal of Experimental Medicine
JF - Journal of Experimental Medicine
SN - 0022-1007
IS - 11
M1 - e20220514
ER -