Atomic-level characterization of the methadone-stabilized active conformation of μ-opioid receptor

Abhijeet Kapoor, Davide Provasi, Marta Filizola

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Methadone is a synthetic opioid agonist with notoriously unique properties, such as lower abuse liability and induced relief of withdrawal symptoms and drug cravings, despite acting on the same opioid receptors triggered by classic opioids-in particular the m-opioid receptor (MOR). Its distinct pharmacologic properties, which have recently been attributed to the preferential activation of b-arrestin over G proteins, make methadone a standard-of-care maintenance medication for opioid addiction. Although a recent biophysical study suggests that methadone stabilizes different MOR active conformations from those stabilized by classic opioid drugs or G protein-biased agonists, how this drug modulates the conformational equilibrium of MOR and what specific active conformation of the receptor it stabilizes are unknown. Here, we report the results of submillisecond adaptive sampling molecular dynamics simulations of a predicted methadone-bound MOR complex and compare them with analogous data obtained for the classic opioid morphine and the G protein-biased ligand TRV130. The model, which is supported by existing experimental data, is analyzed using Markov state models and transfer entropy analysis to provide testable hypotheses of methadone-specific conformational dynamics and activation kinetics of MOR.

Original languageEnglish
Pages (from-to)475-486
Number of pages12
JournalMolecular Pharmacology
Volume98
Issue number4
DOIs
StatePublished - Oct 2020

Fingerprint

Dive into the research topics of 'Atomic-level characterization of the methadone-stabilized active conformation of μ-opioid receptor'. Together they form a unique fingerprint.

Cite this